Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1830


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Testing stellar population models with star clusters in the Large Magellanic Cloud
We present high signal-to-noise ratio integrated spectra of 24 starclusters in the Large Magellanic Cloud (LMC), obtained using the FLAIRspectrograph at the UK Schmidt telescope. The spectra have been placedon to the Lick/IDS system in order to test the calibration of SimpleStellar Population (SSP) models. We have compared the SSP-predictedmetallicities of the clusters with those from the literature,predominantly taken from the Ca-triplet spectroscopy of Olszewski et al.(1991). We find that there is good agreement between the metallicitiesin the range -2.10 <=[Fe/H]<= 0. However, the Mg2 index(and to a lesser degree Mg b) systematically predict highermetallicities (up to +0.5 dex higher) than . Among thepossible explanations for this are that the LMC clusters possess[α/Fe] > 0. Metallicities are presented for eleven LMC clusterswhich have no previous measurements. We compare SSP ages for theclusters, derived from the Hβ, Hγ and Hδ Lick/IDSindices, with the available literature data, and find good agreement forthe vast majority. This includes six old globular clusters in oursample, which have ages consistent with their HST colour-magnitudediagram (CMD) ages and/or integrated colours. However, two globularclusters, NGC 1754 and NGC 2005, identified as old (~15 Gyr) on thebasis of HST CMDs, have Hβ line-strengths which lead ages that aretoo low (~8 and ~6 Gyr respectively). These findings are inconsistentwith their CMD-derived values at the 3σ level. Comparison betweenthe horizontal branch morphology and the Balmer line strengths of theseclusters suggests that the presence of blue horizontal branch stars hasincreased their Balmer indices by up to ~1.0 Å. We conclude thatthe Lick/IDS indices, used in conjunction with contemporary SSP models,are able to reproduce the ages and metallicities of the LMC clustersreassuringly well. The required extrapolations of the fitting functionsand stellar libraries in the models to lower ages and low metallicitiesdo not lead to serious systematic errors. However, owing to thesignificant contribution of horizontal branch stars to Balmer indices,SSP model ages derived for metal-poor globular clusters are ambiguouswithout a priori knowledge of horizontal branch morphology.

A statistical study of binary and multiple clusters in the LMC
Based on the Bica et al. (\cite{bica}) catalogue, we studied the starcluster system of the LMC and provide a new catalogue of all binary andmultiple cluster candidates found. As a selection criterion we used amaximum separation of 1farcm4 corresponding to 20 pc (assuming adistance modulus of 18.5 mag). We performed Monte Carlo simulations andproduced artificial cluster distributions that we compared with the realone in order to check how many of the found cluster pairs and groups canbe expected statistically due to chance superposition on the plane ofthe sky. We found that, depending on the cluster density, between 56%(bar region) and 12% (outer LMC) of the detected pairs can be explainedstatistically. We studied in detail the properties of the multiplecluster candidates. The binary cluster candidates seem to show atendency to form with components of similar size. When possible, westudied the age structure of the cluster groups and found that themultiple clusters are predominantly young with only a few cluster groupsolder than 300 Myr. The spatial distribution of the cluster pairs andgroups coincides with the distribution of clusters in general; however,old groups or groups with large internal age differences are mainlylocated in the densely populated bar region. Thus, they can easily beexplained as chance superpositions. Our findings show that a formationscenario through tidal capture is not only unlikely due to the lowprobability of close encounters of star clusters, and thus the evenlower probability of tidal capture, but the few groups with largeinternal age differences can easily be explained with projectioneffects. We favour a formation scenario as suggested by Fujimoto &Kumai (\cite{fk}) in which the components of a binary cluster formedtogether and thus should be coeval or have small age differencescompatible with cluster formation time scales. Table 6 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/547

The Optical Gravitational Lensing Experiment. Catalog of Star Clusters from the Large Magellanic Cloud
We present the catalog of star clusters found in the area of about 5.8square degree in the central regions of the Large Magellanic Cloud. Itcontains data for 745 clusters. 126 of them are new objects. For eachcluster equatorial coordinates, radius, approximate number of membersand cross-identification are provided. Photometric data for all clusterspresented in the catalog and Atlas consisting of finding charts andcolor-magnitude diagrams are available electronically from the OGLEInternet archive.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

Clusters in the west side of the bar of the Large Magellanic Cloud: interacting pairs?
In this paper, we present the VI-CCD photometry of 11 unstudied clusterslocated in the bar of the Large Magellanic Cloud (LMC), as a part of aproject aimed to infer the star formation history of this galaxy. Wederive the ages of these clusters by means of isochrone fitting. Threeclose pairs of clusters are included in the sample, namely NGC 1903-SL357, SL 349-SL 353, SL 387-SL 385. We discuss the surface photometry ofthese objects: the distortion in the isophotal contours is regarded as asign of interactions between pairs of physically connected clusters.While the systems SL 349-SL 353 and SL 387-SL 385 are likely pairs ofnearly coeval clusters, NGC 1903-SL 357 is not because of the large agedifference between the two. Several possible mechanisms for theformation of this peculiar pair are examined in the context ofinteractions between the Large and Small Magellanic Cloud (SMC).

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Bar star clusters in the LMC - Formation history from UBV integrated photometry
The sample of star clusters in the LMC Bar region with integrated UBVphotometry was enlarged by approximately a factor four, totaling 129objects. The (B-V) histogram gap between blue and red clustersdisappears with this deeper sample. Age groups in terms of equivalentSWB types were derived and their spatial distribution studied. Clustersyounger than t about 200 Myr are not homogeneously distributed throughthe bar. In particular a strong star forming event at t about 100 Myrwas detected in the eastern part of the Bar, consisting of a compactgrouping of seven coeval clusters around NGC 2058 and NGC 2065. Also, 11close pairs and two trios are analyzed, and the colors indicate thatonly four pairs are clearly not coeval.

A catalogue of binary star cluster candidates in the Large Magellanic Cloud
A photographic atlas of close pairs of star clusters in the LargeMagellanic Cloud is presented here. The criterion for inclusion ofcluster pairs in the atlas was an upper limit of 18.7 pc for theprojected separation between the centers of the clusters in each pair.Accurate coordinates for the clusters, the projected separations andestimates of the diameters and positional angles are given and some ofthe global properties of the cluster-pair population of the LMC arediscussed. It is found that the individual clusters in pairspreferentially have nearly equal sizes.

Binary star clusters in the Large Magellanic Cloud
In a survey of the LMC cluster system, double clusters with acenter-to-center separation of less than 1.3 arcmin (18 pc) have beenidentified. It is inferred that a considerable fraction of these doubleclusters must be binaries since the calculated projection effects canaccount for only 31 of them. This inference is strongly supported by thefact that the ages available for some of the culsters of the sample (asdetermined from UBV photometry) are less than the computed times ofmerger or disruption of the binary cluster system. Furthermore, thespace distribution of these pairs indicates that these clusters belongto a very young or young population.

Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud
An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.

The extended giant branches of intermediate age globular clusters in the Magellanic Clouds. III
The latest findings of a photographic near-IR survey of the red globularclusters in the Magellanic Clouds for upper asymptotic giant branchstars are reported. New IR (JHK) photometry for some 80 cluster stars isalso presented. These results combined with earlier data are used toderive age estimates for a nearly complete sample of Cloud clustershaving an integrated absolute magnitude less than -7. The agedistribution of clusters in the Large Cloud, which shows a pronouncedpeak at 4 Gyr, may be different from that in the Small Cloud. This peakcould be a result of luminosity evolution of clusters, however, and aconstant rate of cluster formation in the Large Cloud cannot be ruledout. A cluster age-metallicity relation clearly exists in the LargeCloud, althoug the degree of scatter about this relation is somewhatuncertain and may be significant.

A Catalogue of Clusters in The LMC
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Schwertfisch
Right ascension:05h04m39.09s
Declination:-69°20'26.1"
Apparent magnitude:99.9

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1830

→ Request more catalogs and designations from VizieR