Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 157664


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Formation and Evolution of Planetary Systems: Properties of Debris Dust Around Solar-Type Stars
We present Spitzer photometric (IRAC and MIPS) and spectroscopic (IRSlow resolution) observations for 314 stars in the Formation andEvolution of Planetary Systems Legacy program. These data are used toinvestigate the properties and evolution of circumstellar dust aroundsolar-type stars spanning ages from approximately 3 Myr-3 Gyr.We identify 46 sources that exhibit excess infrared emission above thestellar photosphere at 24 μm, and 21 sources with excesses at 70μm. Five sources with an infrared excess have characteristics ofoptically thick primordial disks, while the remaining sources haveproperties akin to debris systems. The fraction of systems exhibiting a24 μm excess greater than 10.2% above the photosphere is 15% for ages< 300 Myr and declines to 2.7% for older ages. The upper envelope tothe 70 μm fractional luminosity appears to decline over a similar agerange. The characteristic temperature of the debris inferred from theIRS spectra range between 60 and 180 K, with evidence for the presenceof cooler dust to account for the strength of the 70 μm excessemission. No strong correlation is found between dust temperature andstellar age. Comparison of the observational data with disk modelscontaining a power-law distribution of silicate grains suggests that thetypical inner-disk radius is gsim 10 AU. Although the interpretation isnot unique, the lack of excess emission shortward of 16 μm and therelatively flat distribution of the 24 μm excess for ages lsim 300Myr is consistent with steady-state collisional models.

The Palomar/Keck Adaptive Optics Survey of Young Solar Analogs: Evidence for a Universal Companion Mass Function
We present results from an adaptive optics survey for substellar andstellar companions to Sun-like stars. The survey targeted 266 F5-K5stars in the 3 Myr-3 Gyr age range with distances of 10-190 pc.Results from the survey include the discovery of two brown dwarfcompanions (HD 49197B and HD 203030B), 24 new stellar binaries, and atriple system. We infer that the frequency of 0.012-0.072Msun brown dwarfs in 28-1590 AU orbits around young solaranalogs is 3.2+3.1 -2.7% (2σ limits).The result demonstrates that the deficiency of substellar companions atwide orbital separations from Sun-like stars is less pronounced than inthe radial velocity "brown dwarf desert." We infer that the massdistribution of companions in 28-1590 AU orbits around solar-mass starsfollows a continuous dN/dM 2 vprop M -0.42 relation over the 0.01-1.0 M sun secondary massrange. While this functional form is similar to that for isolatedobjects less than 0.1 M sun, over the entire 0.01-1.0 Msun range, the mass functions of companions and of isolatedobjects differ significantly. Based on this conclusion and on similarresults from other direct imaging and radial velocity companion surveysin the literature, we argue that the companion mass function follows thesame universal form over the entire range between 0 and 1590 AU inorbital semimajor axis and ≈ 0.01-20 M sun in companionmass. In this context, the relative dearth of substellar versus stellarsecondaries at all orbital separations arises naturally from theinferred form of the companion mass function.

The Formation and Evolution of Planetary Systems: Description of the Spitzer Legacy Science Database
We present the science database produced by the Formation and Evolutionof Planetary Systems (FEPS) Spitzer Legacy program. Data reduction andvalidation procedures for the IRAC, MIPS, and IRS instruments aredescribed in detail. We also derive stellar properties for the FEPSsample from available broadband photometry and spectral types, andpresent an algorithm to normalize Kurucz synthetic spectra to opticaland near-infrared photometry. The final FEPS data products include IRACand MIPS photometry for each star in the FEPS sample and calibrated IRSspectra.

High-Dispersion Optical Spectra of Nearby Stars Younger Than the Sun
We present high-dispersion (R~16,000) optical (3900-8700 Å)spectra of 390 stars obtained with the Palomar 60 inch telescope. Themajority of stars observed are part of the Spitzer Legacy ScienceProgram ``The Formation and Evolution of Planetary Systems.'' Throughdetailed analysis we determine stellar properties for this sample,including radial and rotational velocities, Li I λ6708 andHα equivalent widths, the chromospheric activity indexR'HK, and temperature- and gravity-sensitive lineratios. Several spectroscopic binaries are also identified. From ourtabulations, we illustrate basic age- and rotation-related correlationsamong measured indices. One novel result is that Ca II chromosphericemission appears to saturate at vsini values above ~30 kms-1, similar to the well-established saturation of X-raysthat originate in the spatially separate coronal region.

The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer
We provide an overview of the Spitzer Legacy Program, Formation andEvolution of Planetary Systems, that was proposed in 2000, begun in2001, and executed aboard the Spitzer Space Telescope between 2003 and2006. This program exploits the sensitivity of Spitzer to carry outmid-infrared spectrophotometric observations of solar-type stars. With asample of ~328 stars ranging in age from ~3 Myr to ~3 Gyr, we trace theevolution of circumstellar gas and dust from primordial planet-buildingstages in young circumstellar disks through to older collisionallygenerated debris disks. When completed, our program will help define thetimescales over which terrestrial and gas giant planets are built,constrain the frequency of planetesimal collisions as a function oftime, and establish the diversity of mature planetary architectures. Inaddition to the observational program, we have coordinated a concomitanttheoretical effort aimed at understanding the dynamics of circumstellardust with and without the effects of embedded planets, dust spectralenergy distributions, and atomic and molecular gas line emission.Together with the observations, these efforts will provide anastronomical context for understanding whether our solar system-and itshabitable planet-is a common or a rare circumstance. Additionalinformation about the FEPS project can be found on the team Web site.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The Formation and Evolution of Planetary Systems: First Results from a Spitzer Legacy Science Program
We present 3-160 μm photometry obtained with the Infrared ArrayCamera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS)instruments for the first five targets from the Spitzer Space TelescopeLegacy Science Program ``Formation and Evolution of Planetary Systems''and 4-35 μm spectrophotometry obtained with the Infrared Spectrograph(IRS) for two sources. We discuss in detail our observations of thedebris disks surrounding HD 105 (G0 V, 30+/-10 Myr) and HD 150706 (G3 V,~700+/-300 Myr). For HD 105, possible interpretations include largebodies clearing the dust inside of 45 AU or a reservoir of gas capableof sculpting the dust distribution. The disk surrounding HD 150706 alsoexhibits evidence of a large inner hole in its dust distribution. Of thefour survey targets without previously detected IR excess, spanning ages30 Myr to 3 Gyr, the new detection of excess in just one system ofintermediate age suggests a variety of initial conditions or divergentevolutionary paths for debris disk systems orbiting solar-type stars.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:りゅう座
Right ascension:17h18m58.46s
Declination:+68°52'40.6"
Apparent magnitude:7.978
Distance:83.822 parsecs
Proper motion RA:32
Proper motion Dec:5.5
B-T magnitude:8.601
V-T magnitude:8.03

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 157664
TYCHO-2 2000TYC 4421-995-1
USNO-A2.0USNO-A2 1575-03781480
HIPHIP 84714

→ Request more catalogs and designations from VizieR