Главная     Введение     Выжить во Вселенной    
Inhabited Sky
    News@Sky     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Пресса     Войти  

HD 74462


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

Improved Laboratory Transition Probabilities for Hf II and Hafnium Abundances in the Sun and 10 Metal-poor Stars
Radiative lifetimes from laser-induced fluorescence measurements,accurate to ~+/-5%, are reported for 41 odd-parity levels of Hf II. Thelifetimes are combined with branching fractions measured using Fouriertransform spectrometry to determine transition probabilities for 150lines of Hf II. Approximately half of these new transition probabilitiesoverlap with recent independent measurements using a similar approach.The two sets of measurements are found to be in good agreement for linesin common. Our new laboratory data are applied to refine the hafniumphotospheric solar abundance and to determine hafnium abundances in 10metal-poor giant stars with enhanced r-process abundances. For the Sunwe derive logɛ(Hf)=0.88+/-0.08 from four lines; the uncertaintyis dominated by the weakness of the lines and their blending by otherspectral features. Within the uncertainties of our analysis, ther-process-rich stars possess constant Hf/La and Hf/Eu abundance ratios,logɛ(Hf/La)=-0.13+/-0.02(σ=0.06) andlogɛ(Hf/Eu)=+0.04+/-0.02 (σ=0.06). The observed averagestellar abundance ratio of Hf/Eu and La/Eu is larger than previousestimates of the solar system r-process-only value, suggesting asomewhat larger contribution from the r-process to the production of Hfand La. The newly determined Hf values could be employed as part of thechronometer pair, Th/Hf, to determine radioactive stellar ages.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

Estimation of Carbon Abundances in Metal-Poor Stars. I. Application to the Strong G-Band Stars of Beers, Preston, and Shectman
We develop and test a method for the estimation of metallicities([Fe/H]) and carbon abundance ratios ([C/Fe]) for carbon-enhancedmetal-poor (CEMP) stars based on the application of artificial neuralnetworks, regressions, and synthesis models to medium-resolution (1-2Å) spectra and J-K colors. We calibrate this method by comparisonwith metallicities and carbon abundance determinations for 118 starswith available high-resolution analyses reported in the recentliterature. The neural network and regression approaches make use of apreviously defined set of line-strength indices quantifying the strengthof the Ca II K line and the CH G band, in conjunction with J-K colorsfrom the Two Micron All Sky Survey Point Source Catalog. The use ofnear-IR colors, as opposed to broadband B-V colors, is required becauseof the potentially large affect of strong molecular carbon bands onbluer color indices. We also explore the practicality of obtainingestimates of carbon abundances for metal-poor stars from the spectralinformation alone, i.e., without the additional information provided byphotometry, as many future samples of CEMP stars may lack such data. Wefind that although photometric information is required for theestimation of [Fe/H], it provides little improvement in our derivedestimates of [C/Fe], and hence, estimates of carbon-to-iron ratios basedsolely on line indices appear sufficiently accurate for most purposes.Although we find that the spectral synthesis approach yields the mostaccurate estimates of [C/Fe], in particular for the stars with thestrongest molecular bands, it is only marginally better than is obtainedfrom the line index approaches. Using these methods we are able toreproduce the previously measured [Fe/H] and [C/Fe] determinations withan accuracy of ~0.25 dex for stars in the metallicity interval-5.5<=[Fe/H]<=-1.0 and with 0.2<=(J-K)0<=0.8. Athigher metallicity, the Ca II K line begins to saturate, especially forthe cool stars in our program, and hence, this approach is not useful insome cases. As a first application, we estimate the abundances of [Fe/H]and [C/Fe] for the 56 stars identified as possibly carbon-rich, relativeto stars of similar metal abundance, in the sample of ``strong G-band''stars discussed by Beers, Preston, and Shectman.

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

Abundances of Extremely Metal-poor Star Candidates
We present chemical abundances for 110 stars identified inobjective-prism surveys as candidates for being very metal-poor. Theabundances are derived from high-S/N, intermediate-resolution spectraobtained with the Keck Observatory Echellette Spectrograph and Imager(ESI). An additional 25 stars with well-determined abundances rangingfrom [Fe/H]=-1.5 to -3.2 were observed and the results used to helpcalibrate our analysis and determine the accuracy of our abundancedeterminations. Abundances for the program stars were measured for Fe,Mg, Ca, Ti, Cr, and Ba with an accuracy of approximately 0.3 dex.Fifty-three of the stars in our sample have [Fe/H]<=-2, 22 have[Fe/H]<=-2.5, and 13 have [Fe/H]<=-2.9. Surprisingly,approximately one-third of the sample is relatively metal-rich, with[Fe/H]>-1.5. In addition to identifying a number of extremelymetal-poor stars, this study also shows that moderate-resolution spectraobtained with the Keck ESI yield relatively accurate abundances forstars as faint as V=14 with modest exposure time (~20 minutes). Thiscapability will prove useful if the so-far elusive stars at [Fe/H]<-4turn out to be mostly fainter than V=15.The data presented herein were obtained at the W. M. Keck Observatory,which is operated as a scientific partnership among the CaliforniaInstitute of Technology, the University of California, and the NationalAeronautics and Space Administration. The Observatory was made possibleby the generous financial support of the W. M. Keck Foundation.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Comparing Deep Mixing in Globular Cluster and Halo Field Giants: Carbon Abundance Data from the Literature
The behavior of carbon abundance as a function of luminosity is used tocompare the rates of deep mixing within red giants of four globularclusters and the Galactic halo field population. Measurements of [C/Fe]for the clusters M92, NGC 6397, M3, and M13 have been compiled from theliterature, together with the Gratton et al. data for halo field stars.Plots of [C/Fe] versus absolute visual magnitude show that forMV<+1.6 the rate of decline of carbon abundance withincreasing luminosity on the red giant branch isd[C/Fe]/dMV~0.22+/-0.03 among the field stars, as well as inM92, NGC 6397, and M3. Among giants fainter than MV=+1.6 thevariation of [C/Fe] with absolute magnitude is much less. The dataindicate that the rate at which deep mixing introduces carbon-depletedmaterial into the convective envelopes of field halo stars during theupper red giant branch phase of evolution is similar to that of manyglobular cluster giants. The notable exception appears to be M13, inwhich stars exhibit deep mixing at a greater rate; this may account forthe high incidence of very low oxygen abundances among the most luminousgiants in M13 in comparison to M3.

Oxygen Abundances in Metal-poor Stars
We present oxygen abundances derived from both the permitted andforbidden oxygen lines for 55 subgiants and giants with [Fe/H] valuesbetween -2.7 and solar with the goal of understanding the discrepancy inthe derived abundances. A first attempt, using Teff valuesfrom photometric calibrations and surface gravities from luminositiesobtained agreement between the indicators for turn-off stars, but thedisagreement was large for evolved stars. We find that the difference inthe oxygen abundances derived from the permitted and forbidden lines ismost strongly affected by Teff, and we derive a newTeff scale based on forcing the two sets of lines to give thesame oxygen abundances. These new parameters, however, do not agree withother observables, such as theoretical isochrones or Balmer-line profilebased Teff determinations. Our analysis finds thatone-dimensional, LTE analyses (with published non-LTE corrections forthe permitted lines) cannot fully resolve the disagreement in the twoindicators without adopting a temperature scale that is incompatiblewith other temperature indicators. We also find no evidence ofcircumstellar emission in the forbidden lines, removing such emission asa possible cause for the discrepancy.

High resolution spectroscopy over lambda lambda 8500-8750 Å for GAIA. IV. Extending the cool MK stars sample
A library of high resolution spectra of MK standard and reference stars,observed in support to the GAIA mission, is presented. The aim of thispaper is to integrate the MK mapping of Paper I of this series as wellas to consider stars over a wider range of metallicities. Radialvelocities are measured for all the target stars.The spectra are available in electronic form (ASCII format) at CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/995 and from the webpage http://ulisse.pd.astro.it/MoreMK/, where further bibliographicalinformation for the target stars is given.

A grid of synthetic spectra and indices Fe5270, Fe5335, Mgb and Mg2 as a function of stellar parameters and [alpha/Fe]
We have computed a grid of synthetic spectra in the wavelength rangelambda lambda 4600-5600 Å using revised model atmospheres, for arange of atmospheric parameters and values of [alpha -elements/Fe] = 0.0and +0.4. The Lick indices Fe5270, Fe5335, Mgb and Mg2 aremeasured on the grid spectra for FWHM = 2 to 8.3 Å. Relationsbetween the indices Fe5270, Fe5335 and Mg2 and the stellarparameters effective temperature Teff, log ; g, [Fe/H] and[alpha /Fe], valid in the range 4000 <= Teff <= 7000 K,are presented. These fitting functions are given for FWHM = 3.5 and 8.3Å. The indices were also measured for a list of 97 reference starswith well-known stellar parameters observed at ESO and OHP, and theseare compared to the computed indices. Finally, a comparison of theindices measured on the observed spectra and those derived from thefitting functions based on synthetic spectra is presented.Observations collected at the European Southern Observatory (ESO), LaSilla, Chile and at the Observatoire de Haute Provence (OHP), St-Michel,France.All Tables of Appendices A and B are only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/404/661

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Three-dimensional Spectral Classification of Low-Metallicity Stars Using Artificial Neural Networks
We explore the application of artificial neural networks (ANNs) for theestimation of atmospheric parameters (Teff, logg, and [Fe/H])for Galactic F- and G-type stars. The ANNs are fed withmedium-resolution (Δλ~1-2 Å) non-flux-calibratedspectroscopic observations. From a sample of 279 stars with previoushigh-resolution determinations of metallicity and a set of (external)estimates of temperature and surface gravity, our ANNs are able topredict Teff with an accuracy ofσ(Teff)=135-150 K over the range4250<=Teff<=6500 K, logg with an accuracy ofσ(logg)=0.25-0.30 dex over the range 1.0<=logg<=5.0 dex, and[Fe/H] with an accuracy σ([Fe/H])=0.15-0.20 dex over the range-4.0<=[Fe/H]<=0.3. Such accuracies are competitive with theresults obtained by fine analysis of high-resolution spectra. It isnoteworthy that the ANNs are able to obtain these results withoutconsideration of photometric information for these stars. We have alsoexplored the impact of the signal-to-noise ratio (S/N) on the behaviorof ANNs and conclude that, when analyzed with ANNs trained on spectra ofcommensurate S/N, it is possible to extract physical parameter estimatesof similar accuracy with stellar spectra having S/N as low as 13. Takentogether, these results indicate that the ANN approach should be ofprimary importance for use in present and future large-scalespectroscopic surveys.

Detection of Metal-poor Stars in the Direction of the North Galactic Pole
A simple approach to detecting metal-poor stars is to measure amagnesium index, which depends on the Mg H band plus the three nearby Mgb lines and is derived through intermediate-band interference filters.An empirically established line of demarcation in the Mg index versusB-V diagram separates metal-poor stars from solar-abundance stars. Afurther separation between metal-poor dwarfs and giants depends on B-Vprimarily dwarfs for B-V<0.55, giants for B-V>0.7, with both dwarfsand giants falling in the transition region. For the metal-poor giantsthe distance from the demarcation line correlates well with [Fe/H],permitting estimates of stellar abundances. Stars in two regions on thesky in the vicinity of the north Galactic pole have been observed withsuch a set of filters. Eighteen stars (6% of the population of 299) inthe sample covering the V range 8.7 to 15.6 and 48 stars (31% of thepopulation of 163) in a deeper probe to V=19.9 found through thisprocess are suspected metal-poor stars according to their Mg indices.Twenty-three are specifically deemed giants, with<[Fe/H]><=-1.5.

Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants
New abundances for neutron-capture (n-capture) elements in a largesample of metal-poor giants from the Bond survey are presented. Thespectra were acquired with the KPNO 4 m echelle and coudé feedspectrographs, and have been analyzed using LTE fine-analysis techniqueswith both line analysis and spectral synthesis. Abundances of eightn-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu, and Dy) in 43 stars havebeen derived from blue (λλ4070-4710, R~20,000, S/Nratio~100-200) echelle spectra and red (λλ6100-6180,R~22,000, S/N ratio~100-200) coudé spectra, and the abundance ofBa only has been derived from the red spectra for an additional 27stars. Overall, the abundances show clear evidence for a largestar-to-star dispersion in the heavy element-to-iron ratios. Thiscondition must have arisen from individual nucleosynthetic events inrapidly evolving halo progenitors that injected newly manufacturedn-capture elements into an inhomogeneous early Galactic halointerstellar medium. The new data also confirm that at metallicities[Fe/H]<~-2.4, the abundance pattern of the heavy (Z>=56) n-captureelements in most giants is well-matched to a scaled solar systemr-process nucleosynthesis pattern. The onset of the main r-process canbe seen at [Fe/H]~-2.9 this onset is consistent with the suggestion thatlow mass Type II supernovae are responsible for the r-process.Contributions from the s-process can first be seen in some stars withmetallicities as low as [Fe/H]~-2.75 and are present in most stars withmetallicities [Fe/H]>-2.3. The appearance of s-process contributionsas metallicity increases presumably reflects the longer stellarevolutionary timescale of the (low-mass) s-process nucleosynthesissites. The lighter n-capture elements (Sr-Y-Zr) are enhanced relative tothe heavier r-process element abundances. Their production cannot beattributed solely to any combination of the solar system r- and mains-processes, but requires a mixture of material from the r-process andfrom an additional n-capture process that can operate at early Galactictime. This additional process could be the weak s-process in massive(~25 Msolar) stars, or perhaps a second r-process site, i.e.,different from the site that produces the heavier (Z>=56) n-captureelements.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Abundances of light elements in metal-poor stars. III. Data analysis and results
We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html

Mixing along the red giant branch in metal-poor field stars
We have determined Li, C, N, O, Na, and Fe abundances, and12C/13C isotopic ratios for a sample of 62 fieldmetal-poor stars in the metallicity range -2<=[Fe/H]<= -1. Starswere selected in order to have accurate luminosity estimates from theliterature, so that evolutionary phases could be clearly determined foreach star. We further enlarged this dataset by adding 43 more starshaving accurate abundances for some of these elements and similarly welldefined luminosities from the literature. This large sample was used toshow that (small mass) lower-RGB stars (i.e. stars brighter than thefirst dredge-up luminosity and fainter than that of the RGB bump) haveabundances of light elements in agreement with predictions fromclassical evolutionary models: only marginal changes occur for CNOelements, while dilution within the convective envelope causes thesurface Li abundance to decrease by a factor of ~ 20. A second, distinctmixing episode occurs in most (perhaps all) small mass metal-poor starsjust after the RGB bump, when the molecular weight barrier left by themaximum inward penetration of the convective shell is canceled by theoutward expansion of the H-burning shell, in agreement with recenttheoretical predictions. In field stars, this second mixing episode onlyreaches regions of incomplete CNO burning: it causes a depletion of thesurface 12C abundance by about a factor of 2.5, and acorresponding increase in the N abundance by about a factor of 4. The12C/13C is lowered to about 6 to 10 (close to butdistinctly higher than the equilibrium value of 3.5), while practicallyall remaining Li is burnt. However an O-Na anti-correlation such astypically observed amongst globular cluster stars, is not present infield stars. None of the 29 field stars more evolved than the RGB bump(including 8 RHB stars) shows any sign of an O depletion or Naenhancement. This means that the second mixing episode is not deepenough to reach regions were ON-burning occurs in field stars. Based inpart on observations made at the ESO La Silla ObservatoryTables 1, 2, 3, 5 and 6 are available in electronic form only at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Rubidium in Metal-deficient Disk and Halo Stars
We report the first extensive study of stellar Rb abundances.High-resolution spectra have been used to determine, or set upper limitson, the abundances of this heavy element and the associated elements Y,Zr, and Ba in 44 dwarfs and giants with metallicities spanning the range-2.0<[Fe/H]<0.0. In metal-deficient stars Rb is systematicallyoverabundant relative to Fe; we find an average [Rb/Fe] of +0.21 for the32 stars with [Fe/H]<-0.5 and measured Rb. This behavior contrastswith that of Y, Zr, and Ba, which, with the exception of three new CHstars (HD 23439A and B and BD +5 deg3640), are consistently slightlydeficient relative to Fe in the same stars; excluding the three CHstars, we find that the stars with [Fe/H]<-0.5 have average [Y/Fe],[Zr/Fe], and [Ba/Fe] of -0.19 (24 stars), -0.12 (28 stars), and -0.06(29 stars), respectively. The different behavior of Rb on the one handand Y, Zr, and Ba on the other can be attributed in part to the factthat in the Sun and in these stars Rb has a large r-process componentwhile Y, Zr, and Ba are mostly s-process elements with only smallr-process components. In addition, the Rb s-process abundance isdependent on the neutron density at the s-processing site. Publishedobservations of Rb in s-process enriched red giants indicate a higherneutron density in the metal-poor giants. These observations imply ahigher s-process abundance for Rb in metal-poor stars. The calculatedcombination of the Rb r-process abundance, as estimated for the stellarEu abundances, and the s-process abundance, as estimated for red giants,accounts satisfactorily for the observed run of [Rb/Fe] with [Fe/H].

Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method
We have recalibrated a method for the estimation of stellar metalabundance, parameterized as [Fe/H], based on medium-resolution (1-2Å) optical spectra (the majority of which cover the wavelengthrange 3700-4500 Å). The equivalent width of the Ca II K line (3933Å) as a function of [Fe/H] and broadband B-V color, as predictedfrom spectrum synthesis and model atmosphere calculations, is comparedwith observations of 551 stars with high-resolution abundances availablefrom the literature (a sevenfold increase in the number of calibrationstars that were previously available). A second method, based on theFourier autocorrelation function technique first described by Ratnatunga& Freeman, is used to provide an independent estimate of [Fe/H], ascalibrated by comparison with 405 standard-star abundances.Metallicities based on a combination of the two techniques for dwarfsand giants in the color range 0.30<=(B-V)_0<=1.2 exhibit anexternal 1 sigma scatter of approximately 0.10-0.20 dex over theabundance range -4.0<=[Fe/H]<=0.5. Particular attention has beengiven to the determination of abundance estimates at the metal-rich endof the calibration, where our previous attempt suffered from aconsiderable zero-point offset. Radial velocities, accurate toapproximately 10 km s^-1, are reported for all 551 calibration stars.

Radial Velocities of Population II Stars. II.
A program for radial velocity measurements of Population II stars wasstarted in 1988 and was carried out during six observing runs. Theprogram includes metal-deficient stars, components of Population IIvisual binaries or common proper motion stars, suspected radial velocityvariables and the Population II stars from the Hipparcos program. Themeasurements were made with the 1 meter reflector at the MaidanakObservatory in Uzbekistan. The average error of a single measurement isabout 0.6 km/s, but for stars at 13 mag or for extremely metal-deficientstars the error is about 2.5 km/s. The catalog contains 621 measurementsfor 164 stars.

IRAS Detections of Metal-poor Red Giants
A number of relatively bright metal-poor red giants from the HD and BDcatalogs are found to have been detected by the IRAS satellite. Data forthese stars have been retrieved from the IRAS Point Source Catalog (PSC)and/or the Faint Source Catalog (FSC). The majority of metal-poor giantsin these samples fall along relatively well-defined sequences in plotsof V-[12] versus B-V and V-I; for these stars, the 12 μm fluxdetected is presumed to arise from the photosphere. Only a subset ofstars detected at 12 μm were detected at 25 μm these are displayedin a plot of [12]-[25] versus V-[12]. There are a small number of giantsthat exhibit notable 12 and/or 25 μm excesses relative to the meansequences defined by the bulk of the sample. Those stars with the mostunambiguous evidence for infrared excesses are variable stars, eitherlong-period or semiregular variables or RV Tauri stars. As such, thosestars exhibiting infrared excesses in the metal-poor giant sample arelikely in the asymptotic giant branch (AGB) or post-AGB phase ofevolution. There is no clear evidence for nonvariable first-ascent redgiants having been detected among the infrared-excess stars. In fact,some metal-poor red giants known to exhibit outflows in theirchromospheres do not show infrared excesses. A Population II starascending the red giant branch for the first time appears to have toolow a mass-loss rate to be recognizable as an infrared-excess star inthe IRAS PSC or FSC.

On the Use of [Na/Fe] and [alpha/Fe] Ratios and Hipparcos-based (U, V, W) Velocities as Age Indicators among Low-Metallicity Halo Field Giants
We have examined the [Na/Fe] and [Mg/Fe] ratios in a sample of 68 fieldhalo giants with -3 <~ [Fe/H] <~ -1. We recalculated the Galactic(U, V, W) velocity components for these stars, using Hipparcos propermotions and a new Hipparcos-based distance scale. We used these data tosee how the abundance ratios may relate to kinematical substructure inthe Galactic halo. To isolate a set of true halo stars, we eliminatedmetal-weak thick-disk stars, about 10% of our sample. The field halogiants show the expected correlation of Na and Mg abundances, so we canuse Na as a surrogate for Mg and the alpha-elements. The most metal-poorstars show a wider dispersion of [Na/Fe] ratios than do the lessmetal-poor stars; the difference is most striking for stars onretrograde galactic orbits. Some 20% of our retrograde giants and 13% ofall our halo giants have [Na/Fe] <= -0.35 and may be significantlyyounger than the oldest halo objects. Halo giants considered ``young''by this Na abundance criterion show a preference for retrograde orbits.Giants in some globular clusters (e.g., M13) do not exhibit the Mgversus Na correlation found among halo field giants. Instead, they havevery large [Na/Fe] ratios and widely scattered [Mg/Fe] ratios, probablyinduced by deep mixing, which field halo giants apparently do notexperience.

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars
The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.

The Abundance of CN. Calcium and Heavy Elements in High Velocity Stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114..825E&db_key=AST

Carbon Isotope Ratios from the First Overtone CO Bands in Metal-Poor Giants.
We report observations of the first overtone bands of (12) CO and (13)CO using the high resolution, infrared spectrometer Phoenix to determinecarbon isotope ratios in field metal poor giant stars. The isotoperatios we have determined are in good agreement with previous work usingblue CH and red CN features. Carbon isotope ratios in metal poor starsappear to decline abruptly to very low values at log g =~ 2 on the firstascent of the giant branch. The decline is consistent with the onset ofmixing of the convective envelope into the hydrogen burning shell.Evidence for a continuing decline in the isotope ratio with increasingluminosity in metal poor giants from log g = 2 to log g = 0 is weak, butsuch a decline cannot be ruled out.

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Distribution and Studies of the Infrared Stellar Population in the Galaxy. VI. The Halo
We present infrared J, H and K observations of 69 local galactic halostars. We produce the two colour (JHK) and the colour magnitude (Kversus (J-K)) diagrams for this stellar sample and compare them with thesame diagrams for the stellar populations in the globular clusters M3,M13, M92 and 47 Tucanae and in the old open cluster M67; we also comparethese diagrams with those for the stellar population in the galacticbulge.

The Infrared Ca II Triplet as a Metallicity Indicator of Stellar Populations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....113.1066I&db_key=AST

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Большая Медведица
Прямое восхождение:08h48m20.65s
Склонение:+67°26'59.9"
Видимая звёздная величина:8.689
Расстояние:645.161 парсек
Собственное движение RA:55.2
Собственное движение Dec:-91.8
B-T magnitude:9.91
V-T magnitude:8.79

Каталоги и обозначения:
Собственные имена   (Edit)
HD 1989HD 74462
TYCHO-2 2000TYC 4134-521-1
USNO-A2.0USNO-A2 1500-05096070
HIPHIP 43228

→ Запросить дополнительные каталоги и обозначения от VizieR