Главная     Введение     Выжить во Вселенной    
Inhabited Sky
    News@Sky     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Пресса     Войти  

HD 85773


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

Chemical Abundances of Outer Halo Stars in the Milky Way
We present the chemical abundances of 57 metal-poor ([Fe/H] 5 kpc above andbelow the Galactic plane. High-resolution (R ˜ 50000-55000), highsignal-to-noise (S/N > 100) spectra for the sample stars obtainedwith Subaru/HDS were used to derive the chemical abundances of Na, Mg,Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y, and Ba with an LTE abundance analysiscode. The resulting abundance data were combined with those presented inthe literature that mostly targeted at smaller Zmax stars,and both data were used to investigate any systematic trends in detailedabundance patterns depending on their kinematics. It was shown that, inthe metallicity range of ?2 < [Fe/H] < ?1, the [Mg/Fe]ratios for stars with Zmax > 5 kpc are systematicallylower (˜0.1 dex) than those with a smaller Zmax. Forthis metallicity range, a modest degree of depression in the [Si/Fe] andthe [Ca/Fe] ratios was also observed. This result of lower [?/Fe]for the assumed outer halo stars is consistent with previous studiesthat found a signature of lower [?/Fe] ratios for stars withextreme kinematics. The distribution of the [Mg/Fe] ratios for the outerhalo stars partly overlaps with that for stars belonging to the MilkyWay dwarf satellites in the metallicity interval of ?2 < [Fe/H]< ?1 and spans a range intermediate between the distributionsfor the inner halo stars and the stars belonging to the satellites. Ourresults confirm the inhomogeneous nature of the chemical abundanceswithin the Milky Way stellar halo, depending on the kinematic propertiesof the constituent stars, as suggested by earlier studies. Possibleimplications for the formation of the Milky Way halo and its relevanceto the suggested dual nature of the halo are discussed.

Chemical Compositions of Kinematically Selected Outer Halo Stars
Chemical abundances of 26 metal-poor dwarfs and giants are determinedfrom high-resolution and high signal-to-noise ratio spectra obtainedwith the Subaru/High Dispersion Spectrograph. The sample is selected sothat most of the objects have outer-halo kinematics. Self-consistentatmospheric parameters were determined by an iterative procedure basedon spectroscopic analysis. Abundances of 13 elements, includingα-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc),iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements(Y, Ba), are determined by two independent data reduction and localthermodynamic equillibrium analysis procedures, confirming theconsistency of the stellar parameters and abundances results. We find adecreasing trend of [α/Fe] with increasing [Fe/H] for the range of–3.5< [Fe/H] <–1, as found by Stephens &Boesgaard. [Zn/Fe] values of most objects in our sample are slightlylower than the bulk of halo stars previously studied. These results arediscussed as possible chemical properties of the outer halo in theGalaxy.Based on data collected at the Subaru Telescope, which is operated bythe National Astronomical Observatory of Japan.

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

A new stellar library in the region of the CO index at 2.3 μm. New index definition and empirical fitting functions
Context: The analysis of unresolved stellar populations demandsevolutionary synthesis models with realistic physical ingredients andextended wavelength coverage. Aims: We quantitatively describe thefirst CO bandhead at 2.3 μm to allow stellar population models toprovide improved predictions in this wavelength range. Methods: Weobserved a new stellar library with a better coverage of the stellaratmospheric parameter space than in earlier works. We performed adetailed analysis of the robustness of previous CO index definitionswith spectral resolution, wavelength calibration, signal-to-noise ratio,and flux calibration. Results: We define a new line-strength index forthe first CO bandhead at 2.3 μm, D_CO, better suited for stellarpopulation studies than previous index definitions. We derive empiricalfitting functions for the CO feature as a function of the stellarparameters (T_eff, log g and [Fe/H]), showing a detailed quantitativemetallicity dependence.

Line Broadening in Field Metal-Poor Red Giant and Red Horizontal Branch Stars
We report 349 radial velocities for 45 metal-poor field red giant branch(RGB) and red horizontal branch (RHB) stars, with time coverage rangingfrom 1 to 21 years. We have identified one new spectroscopic binary, HD4306, and one possible such system, HD 184711. We also provide 57 radialvelocities for 11 of the 91 stars reported in our previous work. All butone of the 11 stars had been found to have variable radial velocities.New velocities for the long-period spectroscopic binaries BD-1 2582 andHD 108317 have extended the time coverage to 21.7 and 12.5 years,respectively, but in neither case have we yet completed a full orbitalperiod. As was found in the previous study, radial velocity "jitter" ispresent in many of the most luminous stars. Excluding stars showingspectroscopic binary orbital motion, all 7 of the red giants withestimated MV values more luminous than -2.0 display jitter,as well as 3 of the 14 stars with -2.0 < MV <= -1.4. Wehave also measured the line broadening in all the new spectra, usingsynthetic spectra as templates. Comparison with results fromhigh-resolution and higher signal-to-noise (S/N) spectra employed byother workers shows good agreement down to line-broadening levels of 3km s-1, well below our instrumental resolution of 8.5 kms-1. As the previous work demonstrated, the majority of themost luminous red giants show significant line broadening, as do many ofthe red horizontal branch stars, and we briefly discuss possible causes.The line broadening appears related to velocity jitter, in that bothappear primarily among the highest luminosity red giants.

Strömgren Photometry of Galactic Globular Clusters. I. New Calibrations of the Metallicity Index
We present a new calibration of the Strömgren metallicity indexm1 using red giant (RG) stars in four globular clusters (GCs:M92, M13, NGC 1851, 47 Tuc) with metallicity ranging from -2.2 to -0.7,marginally affected by reddening [E(B-V)<=0.04] and with accurate(u,v,b,y) photometry. The main difference between the newmetallicity-index-color (MIC) relations and similar relations availablein the literature is that we have adopted the u-y and v-y colors insteadof b-y. These colors present a stronger sensitivity to effectivetemperature, and the MIC relations show a linear slope. The differencebetween photometric estimates and spectroscopic measurements for RGs inM71, NGC 288, NGC 362, NGC 6397, and NGC 6752 is 0.04+/-0.03 dex(σ=0.11 dex). We also apply the new MIC relations to 85 field RGswith metallicity ranging from -2.4 to -0.5 and accurate reddeningestimates. We find that the difference between photometric estimates andspectroscopic measurements is -0.14+/-0.01 dex (σ=0.17 dex). Wealso provide two sets of MIC relations based on evolutionary models thathave been transformed into the observational plane by adopting eithersemiempirical or theoretical color-temperature relations. We apply thesemiempirical relations to the nine GCs and find that the differencebetween photometric and spectroscopic metallicities is 0.04+/-0.03 dex(σ=0.10 dex). A similar agreement is found for the sample of fieldRGs, with a difference of -0.09+/-0.03 dex (with σ=0.19 dex). Thedifference between metallicity estimates based on theoretical relationsand spectroscopic measurements is -0.11+/-0.03 dex (σ=0.14 dex)for the nine GCs and -0.24+/-0.03 dex (σ=0.15 dex) for the fieldRGs. Current evidence indicates that new MIC relations providemetallicities with an intrinsic accuracy better than 0.2 dex.Based in part on observations collected with the 1.54 m Danish Telescopeoperated at ESO (La Silla, Chile) and with the Nordic Optical Telescope(NOT) operated at La Palma (Spain).

Halo Star Streams in the Solar Neighborhood
We have assembled a sample of halo stars in the solar neighborhood tolook for halo substructure in velocity and angular momentum space. Oursample (231 stars) includes red giants, RR Lyrae variable stars, and redhorizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than-1.0. It was chosen to include stars with accurate distances, spacevelocities, and metallicities, as well as well-quantified errors. Withour data set, we confirm the existence of the streams found by Helmi andcoworkers, which we refer to as the H99 streams. These streams have adouble-peaked velocity distribution in the z-direction (out of theGalactic plane). We use the results of modeling of the H99 streams byHelmi and collaborators to test how one might use vz velocityinformation and radial velocity information to detect kinematicsubstructure in the halo. We find that detecting the H99 streams withradial velocities alone would require a large sample (e.g.,approximately 150 stars within 2 kpc of the Sun and within 20° ofthe Galactic poles). In addition, we use the velocity distribution ofthe H99 streams to estimate their age. From our model of the progenitorof the H99 streams, we determine that it was accreted between 6 and 9Gyr ago. The H99 streams have [α/Fe] abundances similar to otherhalo stars in the solar neighborhood, suggesting that the gas thatformed these stars were enriched mostly by Type II supernovae. We havealso discovered in angular momentum space two other possiblesubstructures, which we refer to as the retrograde and progradeoutliers. The retrograde outliers are likely to be halo substructure,but the prograde outliers are most likely part of the smooth halo. Theretrograde outliers have significant structure in the vφdirection and show a range of [α/Fe], with two having low[α/Fe] for their [Fe/H]. The fraction of substructure stars in oursample is between 5% and 7%. The methods presented in this paper can beused to exploit the kinematic information present in future largedatabases like RAVE, SDSS-II/SEGUE, and Gaia.

Measuring the Balmer Jump and the Effective Gravity in FGK Stars
It is difficult to accurately measure the effective gravity (logg) inlate-type stars using broadband (e.g., UBV or SDSS) or intermediate-band(uvby) photometric systems, especially when the stars can cover a rangeof metallicities and reddenings. However, simple spectroscopicobservational and data reduction techniques can yield accurate valuesfor logg through comparison of the Balmer jumps of low-resolutionspectra with recent grids of synthetic flux spectra.

Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters
We present a homogeneous set of stellar atmospheric parameters(Teff, logg, [Fe/H]) for MILES, a new spectral stellarlibrary covering the range λλ 3525-7500Å at2.3Å (FWHM) spectral resolution. The library consists of 985 starsspanning a large range in atmospheric parameters, from super-metal-rich,cool stars to hot, metal-poor stars. The spectral resolution, spectraltype coverage and number of stars represent a substantial improvementover previous libraries used in population synthesis models. Theatmospheric parameters that we present here are the result of aprevious, extensive compilation from the literature. In order toconstruct a homogeneous data set of atmospheric parameters we have takenthe sample of stars of Soubiran, Katz & Cayrel, which has very welldetermined fundamental parameters, as the standard reference system forour field stars, and have calibrated and bootstrapped the data fromother papers against it. The atmospheric parameters for our clusterstars have also been revised and updated according to recent metallicityscales, colour-temperature relations and improved set of isochrones.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^
Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.

Medium-resolution Isaac Newton Telescope library of empirical spectra
A new stellar library developed for stellar population synthesismodelling is presented. The library consists of 985 stars spanning alarge range in atmospheric parameters. The spectra were obtained at the2.5-m Isaac Newton Telescope and cover the range λλ3525-7500 Å at 2.3 Å (full width at half-maximum) spectralresolution. The spectral resolution, spectral-type coverage,flux-calibration accuracy and number of stars represent a substantialimprovement over previous libraries used in population-synthesis models.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

Estimation of Carbon Abundances in Metal-Poor Stars. I. Application to the Strong G-Band Stars of Beers, Preston, and Shectman
We develop and test a method for the estimation of metallicities([Fe/H]) and carbon abundance ratios ([C/Fe]) for carbon-enhancedmetal-poor (CEMP) stars based on the application of artificial neuralnetworks, regressions, and synthesis models to medium-resolution (1-2Å) spectra and J-K colors. We calibrate this method by comparisonwith metallicities and carbon abundance determinations for 118 starswith available high-resolution analyses reported in the recentliterature. The neural network and regression approaches make use of apreviously defined set of line-strength indices quantifying the strengthof the Ca II K line and the CH G band, in conjunction with J-K colorsfrom the Two Micron All Sky Survey Point Source Catalog. The use ofnear-IR colors, as opposed to broadband B-V colors, is required becauseof the potentially large affect of strong molecular carbon bands onbluer color indices. We also explore the practicality of obtainingestimates of carbon abundances for metal-poor stars from the spectralinformation alone, i.e., without the additional information provided byphotometry, as many future samples of CEMP stars may lack such data. Wefind that although photometric information is required for theestimation of [Fe/H], it provides little improvement in our derivedestimates of [C/Fe], and hence, estimates of carbon-to-iron ratios basedsolely on line indices appear sufficiently accurate for most purposes.Although we find that the spectral synthesis approach yields the mostaccurate estimates of [C/Fe], in particular for the stars with thestrongest molecular bands, it is only marginally better than is obtainedfrom the line index approaches. Using these methods we are able toreproduce the previously measured [Fe/H] and [C/Fe] determinations withan accuracy of ~0.25 dex for stars in the metallicity interval-5.5<=[Fe/H]<=-1.0 and with 0.2<=(J-K)0<=0.8. Athigher metallicity, the Ca II K line begins to saturate, especially forthe cool stars in our program, and hence, this approach is not useful insome cases. As a first application, we estimate the abundances of [Fe/H]and [C/Fe] for the 56 stars identified as possibly carbon-rich, relativeto stars of similar metal abundance, in the sample of ``strong G-band''stars discussed by Beers, Preston, and Shectman.

Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters
We present metallicity estimates for seven open clusters based onspectrophotometric indices from moderate-resolution spectroscopy.Observations of field giants of known metallicity provide a correlationbetween the spectroscopic indices and the metallicity of open clustergiants. We use χ2 analysis to fit the relation ofspectrophotometric indices to metallicity in field giants. The resultingfunction allows an estimate of the target-cluster giants' metallicitieswith an error in the method of +/-0.08 dex. We derive the followingmetallicities for the seven open clusters: NGC 1245, [M/H]=-0.14+/-0.04NGC 2099, [M/H]=+0.05+/-0.05 NGC 2324, [M/H]=-0.06+/-0.04 NGC 2539,[M/H]=-0.04+/-0.03 NGC 2682 (M67), [M/H]=-0.05+/-0.02 NGC 6705,[M/H]=+0.14+/-0.08 NGC 6819, [M/H]=-0.07+/-0.12. These metallicityestimates will be useful in planning future extrasolar planet transitsearches, since planets may form more readily in metal-richenvironments.

The Effective Temperature Scale of FGK Stars. I. Determination of Temperatures and Angular Diameters with the Infrared Flux Method
The infrared flux method (IRFM) has been applied to a sample of 135dwarf and 36 giant stars covering the following regions of theatmospheric parameter space: (1) the metal-rich ([Fe/H]>~0) end(consisting mostly of planet-hosting stars), (2) the cool(Teff<~5000 K) metal-poor (-1<~[Fe/H]<~-3) dwarfregion, and (3) the very metal-poor ([Fe/H]<~-2.5) end. These starswere especially selected to cover gaps in previous works onTeff versus color relations, particularly the IRFMTeff scale of A. Alonso and collaborators. Our IRFMimplementation was largely based on the Alonso et al. study (absoluteinfrared flux calibration, bolometric flux calibration, etc.) with theaim of extending the ranges of applicability of their Teffversus color calibrations. In addition, in order to improve the internalaccuracy of the IRFM Teff scale, we recomputed thetemperatures of almost all stars from the Alonso et al. work usingupdated input data. The updated temperatures do not significantly differfrom the original ones, with few exceptions, leaving the Teffscale of Alonso et al. mostly unchanged. Including the stars withupdated temperatures, a large sample of 580 dwarf and 470 giant stars(in the field and in clusters), which cover the ranges3600K<~Teff<~8000K and -4.0<~[Fe/H]<~+0.5, haveTeff homogeneously determined with the IRFM. The meanuncertainty of the temperatures derived is 75 K for dwarfs and 60 K forgiants, which is about 1.3% at solar temperature and 4500 K,respectively. It is shown that the IRFM temperatures are reliable in anabsolute scale given the consistency of the angular diameters resultingfrom the IRFM with those measured by long baseline interferometry, lunaroccultation, and transit observations. Using the measured angulardiameters and bolometric fluxes, a comparison is made between IRFM anddirect temperatures, which shows excellent agreement, with the meandifference being less than 10 K for giants and about 20 K for dwarfstars (the IRFM temperatures being larger in both cases). This resultwas obtained for giants in the ranges 3800K

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Three-dimensional Spectral Classification of Low-Metallicity Stars Using Artificial Neural Networks
We explore the application of artificial neural networks (ANNs) for theestimation of atmospheric parameters (Teff, logg, and [Fe/H])for Galactic F- and G-type stars. The ANNs are fed withmedium-resolution (Δλ~1-2 Å) non-flux-calibratedspectroscopic observations. From a sample of 279 stars with previoushigh-resolution determinations of metallicity and a set of (external)estimates of temperature and surface gravity, our ANNs are able topredict Teff with an accuracy ofσ(Teff)=135-150 K over the range4250<=Teff<=6500 K, logg with an accuracy ofσ(logg)=0.25-0.30 dex over the range 1.0<=logg<=5.0 dex, and[Fe/H] with an accuracy σ([Fe/H])=0.15-0.20 dex over the range-4.0<=[Fe/H]<=0.3. Such accuracies are competitive with theresults obtained by fine analysis of high-resolution spectra. It isnoteworthy that the ANNs are able to obtain these results withoutconsideration of photometric information for these stars. We have alsoexplored the impact of the signal-to-noise ratio (S/N) on the behaviorof ANNs and conclude that, when analyzed with ANNs trained on spectra ofcommensurate S/N, it is possible to extract physical parameter estimatesof similar accuracy with stellar spectra having S/N as low as 13. Takentogether, these results indicate that the ANN approach should be ofprimary importance for use in present and future large-scalespectroscopic surveys.

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants
New abundances for neutron-capture (n-capture) elements in a largesample of metal-poor giants from the Bond survey are presented. Thespectra were acquired with the KPNO 4 m echelle and coudé feedspectrographs, and have been analyzed using LTE fine-analysis techniqueswith both line analysis and spectral synthesis. Abundances of eightn-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu, and Dy) in 43 stars havebeen derived from blue (λλ4070-4710, R~20,000, S/Nratio~100-200) echelle spectra and red (λλ6100-6180,R~22,000, S/N ratio~100-200) coudé spectra, and the abundance ofBa only has been derived from the red spectra for an additional 27stars. Overall, the abundances show clear evidence for a largestar-to-star dispersion in the heavy element-to-iron ratios. Thiscondition must have arisen from individual nucleosynthetic events inrapidly evolving halo progenitors that injected newly manufacturedn-capture elements into an inhomogeneous early Galactic halointerstellar medium. The new data also confirm that at metallicities[Fe/H]<~-2.4, the abundance pattern of the heavy (Z>=56) n-captureelements in most giants is well-matched to a scaled solar systemr-process nucleosynthesis pattern. The onset of the main r-process canbe seen at [Fe/H]~-2.9 this onset is consistent with the suggestion thatlow mass Type II supernovae are responsible for the r-process.Contributions from the s-process can first be seen in some stars withmetallicities as low as [Fe/H]~-2.75 and are present in most stars withmetallicities [Fe/H]>-2.3. The appearance of s-process contributionsas metallicity increases presumably reflects the longer stellarevolutionary timescale of the (low-mass) s-process nucleosynthesissites. The lighter n-capture elements (Sr-Y-Zr) are enhanced relative tothe heavier r-process element abundances. Their production cannot beattributed solely to any combination of the solar system r- and mains-processes, but requires a mixture of material from the r-process andfrom an additional n-capture process that can operate at early Galactictime. This additional process could be the weak s-process in massive(~25 Msolar) stars, or perhaps a second r-process site, i.e.,different from the site that produces the heavier (Z>=56) n-captureelements.

Galactic [O/Fe] and [C/Fe] Ratios: The Influence of New Stellar Parameters
We consider the effects of recent NLTE gravities and Fe abundances onstellar [O/Fe] and [C/Fe] ratios. The NLTE parameters greatly reduce oreliminate the well-known discrepancy between CH- and C I-based Cabundances in metal-poor stars and previously seen trends ofatomic-based [C/Fe] and [O/Fe] with Teff. With the NLTEparameters, the metal-poor molecular-based [C/Fe] ratio maintains itsincrease with declining [Fe/H] this may also be demonstrated by therevised atomic-based ratios. [O/Fe] values derived from OH and O Ifeatures are considerably reduced and typically show improved agreementbut are 0.1-0.2 dex larger than those exhibited by the Lick-Texassyndicate's recent [O I]-based giant determinations. The revised [O/Fe]ratios still show an increase down to at least [Fe/H]~-2 we suggest thatrecent field giant data show an increase with similar slope. Evenadopting uniform NLTE parameters, study-to-study abundance differencescan be significant; moreover, different NLTE studies yield differinggravities and Fe abundances even after taking Teffdifferences into account. Comparison of metal-poor giant gravities andcluster abundances with isochrones, trigonometric gravities, andnear-turnoff cluster abundances yields conflicting indications aboutwhether the evolved gravities might be underestimated as suggested formetal-poor dwarfs. Regardless, we argue that even extreme gravityrevisions do not affect the [O/Fe]-[Fe/H] relation derived from theextant results. Combining what we believe the most reliable giant anddwarf data considered here, we find[O/Fe]=-0.184(+/-0.022)×[Fe/H]+0.019 with an rms scatter of only0.13 dex; there is no indication of a break or slope change atintermediate [Fe/H]. The gentle slope is in very reasonable agreementwith some chemical evolution models employing yields with small mass andmetallicity dependences. Finally, two notes are made concerning Naabundance-spatial position and element-to-element correlations in M13giants.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Abundances of light elements in metal-poor stars. III. Data analysis and results
We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html

Revised Strömgren metallicity calibration for red giants
A new calibration of the Strömgren (b-y),m_1 diagram in terms ofiron abundance of red giants is presented. This calibration is based ona homogeneous sample of giants in the globular clusters omega Centauri,M 22, and M 55 as well as field giants from the list of Anthony-Twarog& Twarog (\cite{anth98}). Towards high metallicities, the newcalibration is connected to a previous calibration by Grebel &Richtler (\cite{greb92}), which was unsatisfactory for iron abudanceslower than -1.0 dex. The revised calibration is valid for CN-weak/normalred giants in the abundance range of -2.0 <[Fe/H]< 0.0 dex, and acolor range of 0.5 < (b-y) < 1.1 mag. As shown for red giants inomega Centauri, CN-weak stars with Strömgren metallicities higherthan -1.0 dex cannot be distinguished in the (b-y),m_1 diagram fromstars with lower iron abundances but higher CN band strengths. Based ondata collected at the European Southern Observatory, La Silla, Chile

Spectrophotometry: Revised Standards and Techniques
The telluric features redward of 6700 Å have been removed from theaccurate spectrophotometric standards of Hamuy et al. to permit morereliable relative and absolute spectrophotometry to be obtained from CCDspectra. Smooth fluxes from 3300 to 10500 Å are best determined bydividing the raw spectra of all objects taken in a night by the rawspectrum of a ``smooth'' spectrum star before deriving the instrumentalresponse function using the revised standard star fluxes. In this waythe telluric features and any large instrumental variation withwavelength are removed from the raw data, leaving smooth spectra thatneed only small corrections to place them on an absolute flux scale.These small corrections with wavelength are well described by alow-order polynomial and result in very smooth flux-calibrated spectra.

Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method
We have recalibrated a method for the estimation of stellar metalabundance, parameterized as [Fe/H], based on medium-resolution (1-2Å) optical spectra (the majority of which cover the wavelengthrange 3700-4500 Å). The equivalent width of the Ca II K line (3933Å) as a function of [Fe/H] and broadband B-V color, as predictedfrom spectrum synthesis and model atmosphere calculations, is comparedwith observations of 551 stars with high-resolution abundances availablefrom the literature (a sevenfold increase in the number of calibrationstars that were previously available). A second method, based on theFourier autocorrelation function technique first described by Ratnatunga& Freeman, is used to provide an independent estimate of [Fe/H], ascalibrated by comparison with 405 standard-star abundances.Metallicities based on a combination of the two techniques for dwarfsand giants in the color range 0.30<=(B-V)_0<=1.2 exhibit anexternal 1 sigma scatter of approximately 0.10-0.20 dex over theabundance range -4.0<=[Fe/H]<=0.5. Particular attention has beengiven to the determination of abundance estimates at the metal-rich endof the calibration, where our previous attempt suffered from aconsiderable zero-point offset. Radial velocities, accurate toapproximately 10 km s^-1, are reported for all 551 calibration stars.

Ca II H and K Photometry on the UVBY System. III. The Metallicity Calibration for the Red Giants
New photometry on the uvby Ca system is presented for over 300 stars.When combined with previous data, the sample is used to calibrate themetallicity dependence of the hk index for cooler, evolved stars. Themetallicity scale is based upon the standardized merger of spectroscopicabundances from 38 studies since 1983, providing an overlap of 122evolved stars with the photometric catalog. The hk index producesreliable abundances for stars in the [Fe/H] range from -0.8 to -3.4,losing sensitivity among cooler stars due to saturation effects athigher [Fe/H], as expected.

On the Use of [Na/Fe] and [alpha/Fe] Ratios and Hipparcos-based (U, V, W) Velocities as Age Indicators among Low-Metallicity Halo Field Giants
We have examined the [Na/Fe] and [Mg/Fe] ratios in a sample of 68 fieldhalo giants with -3 <~ [Fe/H] <~ -1. We recalculated the Galactic(U, V, W) velocity components for these stars, using Hipparcos propermotions and a new Hipparcos-based distance scale. We used these data tosee how the abundance ratios may relate to kinematical substructure inthe Galactic halo. To isolate a set of true halo stars, we eliminatedmetal-weak thick-disk stars, about 10% of our sample. The field halogiants show the expected correlation of Na and Mg abundances, so we canuse Na as a surrogate for Mg and the alpha-elements. The most metal-poorstars show a wider dispersion of [Na/Fe] ratios than do the lessmetal-poor stars; the difference is most striking for stars onretrograde galactic orbits. Some 20% of our retrograde giants and 13% ofall our halo giants have [Na/Fe] <= -0.35 and may be significantlyyounger than the oldest halo objects. Halo giants considered ``young''by this Na abundance criterion show a preference for retrograde orbits.Giants in some globular clusters (e.g., M13) do not exhibit the Mgversus Na correlation found among halo field giants. Instead, they havevery large [Na/Fe] ratios and widely scattered [Mg/Fe] ratios, probablyinduced by deep mixing, which field halo giants apparently do notexperience.

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Гидра
Прямое восхождение:09h53m39.24s
Склонение:-22°50'08.4"
Видимая звёздная величина:9.41
Собственное движение RA:-15.5
Собственное движение Dec:-21.2
B-T magnitude:10.823
V-T magnitude:9.527

Каталоги и обозначения:
Собственные имена   (Edit)
HD 1989HD 85773
TYCHO-2 2000TYC 6603-636-1
USNO-A2.0USNO-A2 0600-12880245
HIPHIP 48516

→ Запросить дополнительные каталоги и обозначения от VizieR