Главная     Введение     Выжить во Вселенной    
Inhabited Sky
    News@Sky     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Пресса     Войти  

HD 110621


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

An absolutely calibrated Teff scale from the infrared flux method. Dwarfs and subgiants
Various effective temperature scales have been proposed over the years.Despite much work and the high internal precision usually achieved,systematic differences of order 100 K (or more) among various scales arestill present. We present an investigation based on the infrared fluxmethod aimed at assessing the source of such discrepancies and pin downtheir origin. We break the impasse among different scales by using alarge set of solar twins, stars which are spectroscopically andphotometrically identical to the Sun, to set the absolute zero point ofthe effective temperature scale to within few degrees. Our newlycalibrated, accurate and precise temperature scale applies to dwarfs andsubgiants, from super-solar metallicities to the most metal-poor starscurrently known. At solar metallicities our results validatespectroscopic effective temperature scales, whereas for [Fe/H]? -2.5our temperatures are roughly 100 K hotter than those determined frommodel fits to the Balmer lines and 200 K hotter than those obtained fromthe excitation equilibrium of Fe lines. Empirical bolometric correctionsand useful relations linking photometric indices to effectivetemperatures and angular diameters have been derived. Our results takefull advantage of the high accuracy reached in absolute calibration inrecent years and are further validated by interferometric angulardiameters and space based spectrophotometry over a wide range ofeffective temperatures and metallicities.Table 8 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/512/A54

Evidence of Tidal Debris from ? Cen in the Kapteyn Group
This paper presents a detailed kinematic and chemical analysis of 16members of the Kapteyn moving group. The group does not appear to bechemically homogenous. However, the kinematics and the chemicalabundance patterns seen in 14 of the stars in this group are similar tothose observed in the well-studied cluster, ? Centauri (?Cen). Some members of this moving group may be remnants of the tidaldebris of ? Cen, left in the Galactic disk during the merger eventthat deposited ? Cen into the Milky Way.

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars
Aims: We present new measurements of the abundances of carbon and oxygenderived from high-excitation C i and O i absorption lines in metal-poorhalo stars, with the aim of clarifying the main sources of these twoelements in the early stages of the chemical enrichment of the Galaxy.Methods: We target 15 new stars compared to our previous study,with an emphasis on additional C/O determinations in the crucialmetallicity range -3 ⪉ [Fe/H]⪉ -2. The stellar effectivetemperatures were estimated from the profile of the Hβ line.Departures from local thermodynamic equilibrium were accounted for inthe line formation for both carbon and oxygen. The non-LTE effects arevery strong at the lowest metallicities but, contrary to what hassometimes been assumed in the past due to a simplified assessment, ofdifferent degrees for the two elements. In addition, for the 28 starswith [Fe/H] < -1 previously analysed, stellar parameters werere-derived and non-LTE corrections applied in the same fashion as forthe rest of our sample, giving consistent abundances for 43 halo starsin total. Results: The new observations and non-LTE calculationsstrengthen previous suggestions of an upturn in C/O towards lowermetallicity (particularly for [O/H] ⪉ -2). The C/O values derivedfor these very metal-poor stars are, however, sensitive to excitationvia the still poorly quantified inelastic H collisions. While these donot significantly affect the non-LTE results for C i, they greatlymodify the O i outcome. Adopting the H collisional cross-sectionsestimated from the classical Drawin formula leads to [C/O] ≈ 0 at[O/H] ≈ -3. To remove the upturn in C/O, near-LTE formation for O ilines would be required, which could only happen if the H collisionalefficiency with the Drawin recipe is underestimated by factors of up toseveral tens of times, a possibility which we consider unlikely. Conclusions: The high C/O values derived at the lowest metallicitiesmay be revealing the fingerprints of Population III stars or may signalrotationally-aided nucleosynthesis in more normal Population II stars.Based on data collected with the European Southern Observatory's VeryLarge Telescope (VLT) at the Paranal, Chile (programmes No. 67.D-0106and 73.D-0024) and with the Magellan Telescope at Las CampanasObservatory, Chile.

Sulphur and zinc abundances in Galactic halo stars revisited
Aims.Based on a new set of sulphur abundances in very metal-poor starsand an improved analysis of previous data, we aim at resolving currentdiscrepancies on the trend of S/Fe vs. Fe/H and thereby gain betterinsight into the nucleosynthesis of sulphur. The trends of Zn/Fe andS/Zn will also be studied. Methods: High resolution VLT/UVES spectra of40 main-sequence stars with -3.3 < [Fe/H] < -1.0 are used toderive S abundances from the weak λ 8694.6 S I line and thestronger λ λ 9212.9,9237.5 pair of S I lines. For onestar, the S abundance is also derived from the S I triplet at 1.046μm recently observed with the VLT infrared echelle spectrographCRIRES. Fe and Zn abundances are derived from lines in the blue part ofthe UVES spectra, and effective temperatures are obtained from theprofile of the Hβ line. Results: Comparison of sulphur abundancesfrom the weak and strong S I lines provides important constraints onnon-LTE effects. The high sulphur abundances reported by others for somemetal-poor stars are not confirmed; instead, when taking non-LTEcorrections into account, the Galactic halo stars distribute around aplateau at [S/Fe] ~ +0.2 dex with a scatter of 0.07 dex only. [Zn/Fe] isclose to zero for metallicities in the range -2.0 < [Fe/H] < -1.0but increases to a level of [Zn/Fe] ~ +0.1 to +0.2 dex in the range -2.7< [Fe/H] < -2.0. At still lower metallicities [Zn/Fe] risessteeply to a value of [Zn/Fe] ~ +0.5 dex at [Fe/H] = -3.2. Conclusions:The trend of S/Fe vs. Fe/H corresponds to the trends of Mg/Fe, Si/Fe,and Ca/Fe and indicates that sulphur in Galactic halo stars has beenmade by α-capture processes in massive SNe. The observed scatterin S/Fe is much smaller than predicted from current stochastic models ofthe chemical evolution of the early Galaxy, suggesting that either themodels or the calculated yields of massive SNe should be revised. Wealso examine the behaviour of S/Zn and find that departures from thesolar ratio are significantly reduced at all metallicities if non-LTEcorrections to the abundances of these two elements are adopted. Thiseffect, if confirmed, would reduce the usefulness of the S/Zn ratio as adiagnostic of past star-formation activity, but would bring closertogether the values measured in damped Lyman-alpha systems and inGalactic stars.Based on observations collected at the European Southern Observatory atParanal, Chile (programmes No. 67.D-0106, 73.D-0024 and CRIRES scienceverification program 60.A-9072). Table 1 and Appendices are onlyavailable in electronic form at http://www.aanda.org

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The non-LTE line formation of neutral carbon in late-type stars
Aims.We investigate the non-Local Thermodynamic Equilibrium (non-LTE)line formation of neutral carbon in late-type stars in order to removesome of the potential systematic errors in stellar abundance analysesemploying C i features. Methods: .The statistical equilibrium codeMULTI was used on a grid of plane-parallel 1D MARCS atmosphericmodels. Results: .Within the parameter space explored, thehigh-excitation C i lines studied are stronger in non-LTE due to thecombined effect of line source function drop and increased line opacitydue to overpopulation of the lower level for the transitions considered;the relative importance of the two effects depends on the particularcombination of T{eff}, log g, [Fe/H] and [C/Fe] and on theanalysed C i line. As a consequence, the non-LTE abundance correctionsare negative and can be substantially so, for example ˜ -0.4 dex inhalo turn-off stars at [Fe/H]˜ -3. The magnitude of the non-LTEcorrections is rather insensitive to whether inelastic H collisions areincluded or not. Conclusions: .Our results have implications onstudies of nucleosynthetic processes and on Galactic chemical evolutionmodels. When applying our calculated corrections to recent observationaldata, the upturn in [C/O] at low metallicity might still be present(thus apparently still necessitating contributions from massive Pop. IIIstars for the carbon production), but at a lower level and possibly witha rather shallow trend of ˜ -0.2 dex/dex below [O/H]˜ -1.

Permitted Oxygen Abundances and the Temperature Scale of Metal-poor Turnoff Stars
We use high-quality VLT/UVES published data of the permitted O I tripletand Fe II lines to determine oxygen and iron abundances in unevolved(dwarfs, turnoff, subgiants) metal-poor halo stars. The calculationshave been performed both in LTE and non-LTE (NLTE), employing effectivetemperatures obtained with the new infrared flux method (IRFM)temperature scale by Ramírez & Meléndez, and surfacegravities from Hipparcos parallaxes and theoretical isochrones. A newlist of accurate transition probabilities for Fe II lines, tied to theabsolute scale defined by laboratory measurements, has been used.Interstellar absorption has been carefully taken into account byemploying reddening maps, stellar energy distributions andStrömgren photometry. We find a plateau in the oxygen-to-iron ratioover more than 2 orders of magnitude in iron abundance(-3.2<[Fe/H]<-0.7), with a mean [O/Fe]=0.5 dex (σ=0.1 dex),independent of metallicity, temperature, and surface gravity. The flat[O/Fe] ratio is mainly due to the use of adequate NLTE corrections andthe new IRFM temperature scale, which, for metal-poor F/early G dwarfsis hotter than most Teff scales used in previous studies ofthe O I triplet. According to the new IRFM Teff scale, thetemperatures of turnoff halo stars strongly depend on metallicity, aresult that is in excellent qualitative and quantitative agreement withstellar evolution calculations, which predict that the Teffof the turnoff at [Fe/H]=-3 is about 600-700 K higher than that at[Fe/H]=-1. Recent determinations of Hα temperatures in turnoffstars are in excellent relative agreement with the new IRFMTeff scale in the metallicity range -2.7<[Fe/H]<-1,with a zero-point difference of only 61 K.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Sulphur and zinc abundances in Galactic stars and damped Lyα systems
High resolution spectra of 34 halo population dwarf and subgiant starshave been obtained with VLT/UVES and used to derive sulphur abundancesfrom the λ λ 8694.0, 8694.6 and λ λ 9212.9,9237.5 S I lines. In addition, iron abundances have been determined from19 Fe II lines and zinc abundances from the λ λ 4722.2,4810.5 lines. The abundances are based on a classical 1D, LTE modelatmosphere analysis, but effects of 3D hydrodynamical modelling on the[S/Fe], [Zn/Fe] and [S/Zn] ratios are shown to be small. We find thatmost halo stars with metallicities in the range -3.2 < [Fe/H] <-0.8 have a near-constant [S/Fe] ≃ +0.3; a least square fit to[S/Fe] vs. [Fe/H] shows a slope of only -0.04 ± 0.01. Among halostars with -1.2 < [Fe/H] < -0.8 the majority have [S/Fe] ≃+0.3, but two stars (previously shown to have low α/Fe ratios)have [S/Fe] ≃ 0.0. For disk stars with [Fe/H] > -1, [S/Fe]decreases with increasing [Fe/H] . Hence, sulphur behaves like othertypical α-capture elements, Mg, Si and Ca. Zinc, on the otherhand, traces iron over three orders of magnitude in [Fe/H], althoughthere is some evidence for a small systematic Zn overabundance ([Zn/Fe]≃ +0.1) among metal-poor disk stars and for halo stars with [Fe/H]< -2.0. Recent measurements of S and Zn in ten damped Lyαsystems (DLAs) with redshifts between 1.9 and 3.4 and zinc abundances inthe range -2.1 < [Zn/H] < -0.15 show an offset relative to the[S/Zn] - [Zn/H] relation in Galactic stars. Possible reasons for thisoffset are discussed, including low and intermittent star formationrates in DLAs.Based on observations collected at the European Southern Observatory,Chile (ESO No. 67.D-0106).Table A1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/415/993

The evolution of the C/O ratio in metal-poor halo stars
We report new measurements of carbon and oxygen abundances in 34 F and Gdwarf and subgiant stars belonging to the halo population and spanning arange of metallicity from [Fe/H] = -0.7 to -3.2 . The survey is based onobservations of four permitted lines of C I near 9100 Å and the OI,λ 7774 triplet, all recorded at high signal-to-noise ratioswith the UVES echelle spectrograph on the ESO VLT. The line equivalentwidths were analysed with the 1D, LTE, MARCS model atmosphere code todeduce C and O abundances; corrections due to non-LTE and 3D effects arediscussed. When combined with similar published data for disk stars, ourresults confirm the metallicity dependence of the C/O ratio known fromprevious stellar and interstellar studies: C/O drops by a factor of˜3-4 as O/H decreases from solar to ˜1/10 solar. Analysed withinthe context of standard models for the chemical evolution of the solarvicinity, this drop results from the metallicity dependence of the Cyields from massive stars with mass loss, augmented by the delayedrelease of C from stars of low and intermediate mass. The former is,however, always the dominant factor. Our survey has also uncoveredtentative evidence to suggest that, as the oxygen abundance decreasesbelow [O/H] = -1, [C/O] may not remain constant at [C/O] = -0.5, aspreviously thought, but increase again, possibly approaching near-solarvalues at the lowest metallicities ([O/H] ≲ -3). With the currentdataset this is no more than a 3σ effect and it may be due tometallicity-dependent non-LTE corrections to the [C/O] ratio which havenot been taken into account. However, its potential importance as awindow on the nucleosynthesis by Population III stars is a strongincentive for future work, both observational and theoretical, to verifyits reality.Based on observations collected at the European Southern Observatory,Chile (ESO No. 67.D-0106).

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

Star Streams and Galactic Structure
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.1595E&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Kinematics of metal-poor stars in the galaxy
We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.

Early type high-velocity stars in the solar neighborhood. IV - Four-color and H-beta photometry
Results are presented from photometric obaservations in the Stromgrenuvby four-color and H-beta systems of early-type high-velocity stars inthe solar neighborhood. Several types of photometrically peculiar starsare selected on the basis of their Stromgren indices and areprovisionally identified as peculiar A stars, field horizontal-branchstars, metal-poor stars near the Population II and old-disk turnoffs,metal-poor blue stragglers, or metallic-line A stars. Numerousphotometrically normal stars were also found.

Subdwarf studies. II - Abundances and kinematics from medium resolution spectra. III - The halo metallicity distribution
Stars previously identified as having UV excesses are observed at 1-Aresolution in the Ca II K-line region. Comparisons of these data withother samples and with Monte Carlo simulations involving a singlecomponent halo have yielded estimates of halo velocity dispersions androtation velocity, corrected for the kinematic biases in the sample. Itis suggested that the data are not consistent with a model in which thehalo formed from star formation in a dissipating, collapsing cloud; theyare, however, reconcilable with the formation of the halo stars bynumerous, independently evolving gas clouds. The metallicitydistribution of a sample of 372 kinematically selected halo stars isthen constructed, with a view to selection effects in the data. Goodagreement is noted between the globular cluster metallicity distributionand a stochastic model with a mean of 10 enrichments/fragment.

Astrometric and astrophysical discontinuities between the galactic old disk and halo stellar populations
Intermediate band, RI, and DDO photometry of the weak-lined stars in thefirst three volumes of the Michigan catalogs of spectral type arediscussed on the basis of luminosity and heavy element abundance. Theinterface between the old disk (Fe/H greater than -0.8 dex) and halo(Fe/H less than -1.2 dex) populations represents discontinuities in boththe stellar motions and the stellar physics. The CN strengths of bothevolved and unevolved halo stars decrease with decreasing temperature,in a mirror image of the increase with decreasing temperature for thedisk objects. The result for the halo giants has been attributed to deepmixing in the stellar atmospheres but the similar result for unevolveddwarfs indicates a difference in formation rather than in evolutionaryprocess of the two populations.

Estimation of stellar metal abundance. I - Calibration of the CA II K index
A method for estimating the stellar metal abundances is proposed whichcompares measures of the equivalent width of a single feature inmoderate resolution (1 A) optical spectra of stars, the Ca II K line at3933 A, with models of the predicted line strength as a function of thebroadband B-V color and Fe/H. The approach is capable of providingestimates of stellar metallicity over the range -4.5 to -1.0 with ascatter of about 0.15 dex for dwarfs and giants in the color range0.33-0.85. For cooler stars, with B-V in the range 0.85-1.1, the scattermay be as large as 0.19 dex. The calibration of the Ca II K index withFe/H is discussed, and average radial velocities and abundances arepresented for several galactic globular clusters.

Armchair cartography - A map of the Galactic halo based on observations of local, metal-poor stars
The velocity distribution of metal-poor halo stars in the solarneighborhood is studied to extract data on the global spatial andkinematic properties of the Galactic stellar halo. A global model of thesolar neighborhood stars is constructed from observed positions andthree-dimensional velocity of local, metal-poor halo stars in terms of adiscrete sum of orbits. The characteristics of the reconstructed haloare examined and used to study the evolution of the halo subsystems.

Ubvy-beta photometry of high-velocity and metal-poor stars. III - Metallicities and ages of the halo stars
The interstellar color excesses, E(b-y) and the metallicities, Fe/Habundance ratio, are determined for the 711 high-velocity and metal-poorstars in the catalog of ubvy-beta photometry compiled by Schuster andNissen (1988). It is found that 220 of these are halo stars and that 15percent of these halo stars have colors that are significantly affectedby interstellar reddening. A minimum age of 18-20 Gyr is determined forthe halo stars. The results suggest that a pressure-supported slowuniform collapse controlled the formation and evolution of the Galaxy.

Starbursts, blue stragglers, and binary stars in local superclusters and groups. II - The old disk and halo populations
A study of the distribution in the HR diagram of stars in severalold-disk population aggregates and in several halo-population aggregatesindicates that the blue straggler phenomenon is ubiquitous. In all thecases considered, several stars are found to lie far from the locusdefined by a semiempirical isochrone that best fits the distribution ofthe bulk of the stars in the aggregate. The results support thestarburst interpretation of blue stragglers in young-disk aggregates.

Metal-poor subdwarfs and early galactic nucleosynthesis
Observations of more than 20 metal-poor subdwarfs are presented,discussing the spectroscopic abundance analyses based on high-reolutionspectra and scaled solar model atmospheres. Many of the stars are shownto be more evolved than can be reconciled with reasonable time scalesbased on standard theory of stellar evolution, suggesting that the postmain sequence evolution of cool metal-poor stars is influenced by anenhanced O/Fe ratio compared with a standard solar mixture. Radialvelocities are given for 60 metal-poor stars, 25 percent of which aresuspected to be velocity variable. The kinematic properties of severalspecific stars are discussed. The abundance ratios Mg/Fe, Ca/Fe, Ti/Fe,Al/Fe, and Mn/Fe as a function of the Fe abundance itself indicate thatthese elements probably have not been produced in purely explosivenucleosynthesis. It is suggested that a considerable fraction of theisotopes must have been synthesized during preceding hydrostatic burningphases.

Four-color UVBY and H-beta photometry of high-velocity and metal-poor stars. I - The catalogue of observations
A catalog of four-color uvby and H-beta photometry for 711 high-velocityand metal-poor stars is given. The selection of the stars and theobserving and reduction techniques used to obtain these data arediscussed. The photometry has been transformed closely onto the standarduvby-beta system. The errors of the data have been estimated using bothinternal and external comparisons. The data are uniform over the sky;that is, there are no significant north-south differences. For the largemajority of stars the mean errors of V, m1, c1, and beta are less than +or - 0.008 mag, and the error of b-y is less than + or - 0.005 mag.Values of V, b-y and beta and rough photometric classifications aregiven for 63 red and/or evolved stars that fall outside the range of thephotometric transformations.

New subdwarfs. VI - Kinematics of 1125 high-proper-motion stars and the collapse of the Galaxy
The UVW velocity components, planar eccentricities, and angular momentaof 878 high-proper-motion stars are determined using the radial-velocitydata of Fouts and Sandage (1986) and compared with chemical abundancesand photometric parallaxes from the UBV photometry of Sandage and Kowal(1986). The results are presented, along with published data on 247additional stars, in extensive tables and graphs and characterized indetail. Two approximately equal components are differentiated: alow-velocity component identified as part of the thick disk described byGilmore and Reid (1983) and a high-velocity halo component. The data arefound to support a model of Galactic collapse (with concomitant spinupand progressive chemical enrichment) which includes a rotating bulge(the thick disk) with kinematic and metallicity properties between thoseof the old thin disk and the halo.

Large and kinematically unbiased samples of G and K type stars. I - The dwarfs
Four-color, H-beta, and (R,I) photometry for the little-evolvedmain-sequence stars from the Bright Star Catalogue, South Galactic Pole,Griffin (1971), and Moore-Paddock-Wayman (Moore and Paddock 1950, andWayman 1960) samples are analyzed. The luminosity and heavy-elementabundances for these stars are calculated in terms of the Hyadessupercluster, the Wolf 630 group, the Sirius supercluster, and theKapteyn star group. The data reveal the presence of a metal-abundancedependent discontinuity near M(v) = +7 mag in the photometric parametersof dwarfs. The distributions of the abundances and the space motions ofthe sample stars are discussed.

Population studies. II - Kinematics as a function of abundance and galactocentric position for (Fe/H) of -0.6 or less
A catalog is presented of some 1200 Galactic objects which have radialvelocities and (Fe/H) abundances of -0.6 or less. These data areanalyzed to yield information on the kinematic properties of the olderpopulations of the Galaxy and on the interdependence between kinematicsand abundance. It is found that the kinematics of the availablekinematically selected stars differ from those of the nonkinematicallyselected objects. No evidence is found for any significant difference inthe kinematic properties of the various halo subgroups, nor for anydependence of kinematics on abundance. While the rotation of the halo issmall at about 37 km/s for (Fe/H) of -1.2 or less, it rises quickly forhigher abundances to a value of about 160 km/s at (Fe/H) = 0.6. Objectsin the abundance range -0.9 to -0.6 appear to belong predominantly to apopulation possessing the kinematic characteristics of a thick disk. Theimplications of these findings for the suggestion that globular clustersbelong to the same population as the noncluster objects, for the originof the thick disk, and for the mass of the Galaxy are discussed.

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Центавр
Прямое восхождение:12h43m43.22s
Склонение:-44°40'31.6"
Видимая звёздная величина:9.965
Собственное движение RA:-219.4
Собственное движение Dec:-18
B-T magnitude:10.431
V-T magnitude:10.004

Каталоги и обозначения:
Собственные имена   (Edit)
HD 1989HD 110621
TYCHO-2 2000TYC 7783-1705-1
USNO-A2.0USNO-A2 0450-14637968
HIPHIP 62108

→ Запросить дополнительные каталоги и обозначения от VizieR