Главная     Введение     Выжить во Вселенной    
Inhabited Sky
    News@Sky     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Пресса     Войти  

HD 104705


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

StarCAT: A Catalog of Space Telescope Imaging Spectrograph Ultraviolet Echelle Spectra of Stars
StarCAT is a catalog of high resolution ultraviolet spectra of objectsclassified as "stars," recorded by Space Telescope Imaging Spectrograph(STIS) during its initial seven years of operations (1997-2004). StarCATis based on 3184 echelle observations of 545 distinct targets, with atotal exposure duration of 5.2 Ms. For many of the objects, broadultraviolet coverage has been achieved by splicing echellegrams taken intwo or more FUV (1150-1700 Å) and/or NUV (1600-3100 Å)settings. In cases of multiple pointings on conspicuously variablesources, spectra were separated into independent epochs. Otherwise,different epochs were combined to enhance the signal-to-noise ratio(S/N). A post-facto correction to the {\sf calstis} pipeline data setscompensated for subtle wavelength distortions identified in a previousstudy of the STIS calibration lamps. An internal "fluxing" procedureyielded coherent spectral energy distributions (SEDs) for objects withbroadly overlapping wavelength coverage. The best StarCAT materialachieves 300 m s-1 internal velocity precision;absolute accuracy at the 1 km s-1 level; photometricaccuracy of order 4%; and relative flux precision several times better(limited mainly by knowledge of SEDs of UV standard stars). WhileStarCAT represents a milestone in the large-scale post-processing ofSTIS echellegrams, a number of potential improvements in the underlying"final" pipeline are identified.

Detection in the Interstellar Medium of the Weak [Mg II] Transition at 1398.8 Å
High- and medium-resolution ultraviolet spectra from the Space TelescopeImaging Spectrograph and the Goddard High Resolution Spectrograph wereused to search for the weak electric quadrupole transitions of [Mg II]near 1398.8 Å. This forbidden doublet was detected in eight sightlines. We calculate an empirical f-value of (1.29 ± 0.13) ×10-5 from all detections and discuss prospects of usingthis weak line in future studies of translucent interstellar clouds andin damped Ly? systems.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained from the Data Archive at the Space Telescope Science Institute,which is operated by the Association of Universities for Research inAstronomy, Inc., under NASA contract NAS 5-26555.

Atomic and Molecular Carbon as a Tracer of Translucent Clouds
Using archival, high-resolution far-ultraviolet Hubble SpaceTelescope/Space Telescope Imaging Spectrograph spectra of 34 Galactic Oand B stars, we measure C I column densities and compare them withmeasurements from the literature of CO and H2 with regard tounderstanding the presence of translucent clouds along the line ofsight. We find that the CO/H2 and CO/C I ratios provide gooddiscriminators for the presence of translucent material, and bothincrease as a function of molecular fraction, fN =2N(H2)/N(H). We suggest that sightlines with values belowCO/H2 ?10-6 and CO/C I ?1 containmostly diffuse molecular clouds, while those with values above sampleclouds in the transition region between diffuse and dark. Thesediscriminating values are also consistent with the change in slope ofthe CO versus H2 correlation near the column density at whichCO shielding becomes important, as evidenced by the change inphotochemistry regime studied by Sheffer et al. Based on the lack ofcorrelation of the presence of translucent material with traditionalmeasures of extinction, we recommend defining "translucent clouds" basedon the molecular content rather than line-of-sight extinctionproperties.

FUSE Measurements of Far-Ultraviolet Extinction. III. The Dependence on R(V) and Discrete Feature Limits from 75 Galactic Sightlines
We present a sample of 75 extinction curves derived from Far UltravioletSpectroscopic Explorer (FUSE) far-ultraviolet spectra supplemented byexisting International Ultraviolet Explorer (IUE) spectra. Theextinction curves were created using the standard pair method based on anew set of dereddened FUSE+IUE comparison stars. Molecular hydrogenabsorption features were removed using individualized H2models for each sightline. The general shape of the FUSE extinction (8.4μm-1 < λ-1 < 11μm-1) was found to be broadly consistent withextrapolations from the IUE extinction (3.3 μm-1< λ-1 < 8.6 μm-1)curve. Significant differences were seen in the strength of the far-UVrise and the width of the 2175 Å bump. All the FUSE+IUE extinctioncurves had positive far-UV slopes giving no indication that the far-UVrise was turning over at the shortest wavelengths. The dependence ofA(λ)/A(V) versus R(V)-1 in the far-UV using thesightlines in our sample was found to be stronger than tentativelyindicated by previous work. We present an updated R(V)-dependentrelationship for the full UV wavelength range (3.3μm-1 <= λ-1 <= 11μm-1). Finally, we searched for discrete absorptionfeatures in the far-ultraviolet. We found a 3σ upper limit of~0.12A(V) on features with a resolution of 250 (~4 Å width) and3σ upper limits of ~0.15A(V) for λ-1 <9.6 μm-1 and ~0.68A(V) forλ-1>9.6 μm-1 on featureswith a resolution of 104 (~0.1 Å width).

A systematic study of variability among OB-stars based on HIPPARCOS photometry
Context: Variability is a key factor for understanding the nature of themost massive stars, the OB stars. Such stars lie closest to the unstableupper limit of star formation. Aims: In terms of statistics, thedata from the HIPPARCOS satellite are unique because of time coverageand uniformity. They are ideal to study variability in this large,uniform sample of OB stars. Methods: We used statisticaltechniques to determine an independant threshold of variabilitycorresponding to our sample of OB stars, and then applied an automaticalgorithm to search for periods in the data of stars that are locatedabove this threshold. We separated the sample stars into 4 maincategories of variability: 3 intrinsic and 1 extrinsic. The intrinsiccategories are: OB main sequence stars (~2/3 of the sample), OBe stars(~10%) and OB Supergiant stars (~1/4).The extrinsic category refers toeclipsing binaries. Results: We classified about 30% of the wholesample as variable, although the fraction depends on magnitude level dueto instrumental limitations. OBe stars tend to be much more variable(≈80%) than the average sample star, while OBMS stars are belowaverage and OBSG stars are average. Types of variables include αCyg, β Cep, slowly pulsating stars and other types from the generalcatalog of variable stars. As for eclipsing binaries, there arerelatively more contact than detached systems among the OBMS and OBestars, and about equal numbers among OBSG stars.

The Extension of the Transition Temperature Plasma into the Lower Galactic Halo
Column densities for H I, Al III, Si IV, C IV, and O VI toward 109 starsand 30 extragalactic objects have been assembled to study the extensionsof these species away from the Galactic plane into the Galactic halo. HI and Al III mostly trace the warm neutral and warm ionized medium,respectively, while Si IV, C IV, and O VI trace a combination of warmphotoionized and collisionally ionized plasmas. The much larger objectsample compared to previous studies allows us to consider and correctfor the effects of the sample bias that has affected earlier but smallersurveys of the gas distributions. We find that Si IV and C IV havesimilar exponential scale heights of 3.2(+1.0, -0.6) and 3.6(+1.0,-0.8) kpc. The scale height of O VI is marginally smaller with h =2.6 ± 0.6 kpc. The transition temperature gas is ~3 times moreextended than the warm ionized medium traced by Al III with h =0.90(+0.62, -0.33) kpc and ~12 times more extended than the warmneutral medium traced by H I with h = 0.24 ± 0.06 kpc. There is afactor of 2 decrease in the dispersion of the log of the column densityratios for transition temperature gas for lines of sight in the Galacticdisk compared to extragalactic lines of sight through the entire halo.The observations are compared to the predictions of the various modelsfor the production of the transition temperature gas in the halo. Theappendix presents a revision to the electron scale height of Gaensler etal.'s 2008 study based on electron dispersion measures.

A Unified Representation of Gas-Phase Element Depletions in the Interstellar Medium
A study of gas-phase element abundances reported in the literature for17 different elements sampled over 243 sight lines in the local part ofour Galaxy reveals that the depletions into solid form (dust grains) areextremely well characterized by trends that employ only three kinds ofparameters. One is an index that describes the overall level ofdepletion applicable to the gas in any particular sight line, and theother two represent linear coefficients that describe how to derive eachelement's depletion from this sight-line parameter. The information fromthis study reveals the relative proportions of different elements thatare incorporated into dust at different stages of grain growth. Anextremely simple scheme is proposed for deriving the dust contents andmetallicities of absorption-line systems that are seen in the spectra ofdistant quasars or the optical afterglows of gamma-ray bursts. Contraryto presently accepted thinking, the elements sulfur and krypton appearto show measurable changes in their depletions as the general levels ofdepletions of other elements increase, although more data are needed toascertain whether or not these findings are truly compelling. Nitrogenappears to show no such increase. The incorporation of oxygen into solidform in the densest gas regions far exceeds the amounts that can takethe form of silicates or metallic oxides; this conclusion is based ondifferential measurements of depletion and thus is unaffected byuncertainties in the solar abundance reference scale.Based in large part on published observations from (1) the NASA/ESAHubble Space Telescope obtained at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555, (2) theFar Ultraviolet Spectroscopic Explorer (FUSE) mission operated by JohnsHopkins University, supported by NASA contract NAS5-32985, and (3) TheCopernicus satellite, supported by NASA grant NAGW-77 to PrincetonUniversity.

An Ultraviolet Search for Interstellar CS
High- and medium-resolution ultraviolet spectra from the Space TelescopeImaging Spectrograph (STIS) and the Goddard High Resolution Spectrograph(GHRS) were used to study the diatomic molecule CS through the C-X(0,0)band at 1401 Å. The band was modeled to verify profile shape. Therest wavelength of the C-X band is refined to a value of 1400.88 Åand a 3? lower limit is set on the oscillator strength at 0.14based on equivalent width upper limits of the A-X(0,0) CS Band at 2577Å. The strength of the 1401 Å band is compared to otherinterstellar parameters and implications for CS formation anddestruction are briefly discussed.

A New FUSE Survey of Interstellar HD
We have used archival FUSE data to complete a survey of interstellar HDin 41 lines of sight with a wide range of extinctions. This follow-up toan earlier survey was made to further assess the utility of HD as acosmological probe; to analyze the HD formation process; and to see whattrends with other interstellar properties were present in the data. Weemployed the curve-of-growth method, supported by line profile fitting,to derive accurate column densities of HD. We find that theN(HD)/2N(H2) ratio is substantially lower than the atomic D/Hratio and conclude that the molecular ratio has no bearing on cosmology,because local processes are responsible for the formation of HD. Basedon correlations with E(B-V), H2, CO, and iron depletion, wefind that HD is formed in the densest portion of the clouds; the slopeof the logN(HD)/logN(H2) correlation is greater than 1.0,caused by the destruction rate of HD declining more slowly than that ofH2; and, as a sidelight, that the depletions are densitydependent.

Interstellar Krypton Abundances: The Detection of Kiloparsec-scale Differences in Galactic Nucleosynthetic History
We present an analysis of Kr I λ1236 line measurements from 50sight lines in the Hubble Space Telescope Space Telescope ImagingSpectrograph and Goddard High Resolution Spectrograph data archives thathave sufficiently high resolution and signal-to-noise ratio to permitreliable krypton-to-hydrogen abundance ratio determinations. Thedistribution of Kr/H ratios in this sample is consistent with a singlevalue for the ISM within 5900 pc of the Sun, log10(Kr/H)=-9.02+/-0.02,apart from a rough annulus from between ~600 and 2500 pc distant. TheKr/H ratio toward stars within this annulus is elevated by approximately0.11 dex, similar to previously noted elevations of O/H and Cu/Hgas-phase abundances beyond ~800 pc. A significant drop in the gas-phaseN/O ratio in the same region suggests that this is an artifact ofnucleosynthetic history. Since the physical scale of the annulus' inneredge is comparable to the radius of the Gould Belt and the outer limitof heliocentric distances where the D/H abundance ratio is highlyvariable, these phenomena may be related to the Gould Belt's origins.Based on observations with the NASA/ESA Hubble Space Telescope (HST) andthe NASA-CNES-CSA Far-Ultraviolet Spectroscopic Explorer (FUSE). HSTspectra were obtained at the Space Telescope Science Institute, which isoperated by the Association of Universities for Research in Astronomy,Inc., under NASA contract NAS 5-26555 FUSE is operated for NASA by theJohn Hopkins University under NASA contract NAS-32985.

The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in the Disk of the Milky Way
To probe the distribution and physical characteristics of interstellargas at temperatures T~3×105 K in the disk of the MilkyWay, we have used the Far Ultraviolet Spectroscopic Explorer (FUSE) toobserve absorption lines of O VI λ1032 toward 148 early-typestars situated at distances >1 kpc. After subtracting off a mildexcess of O VI arising from the Local Bubble, combining our new resultswith earlier surveys of O VI, and eliminating stars that showconspicuous localized X-ray emission, we find an average O VI midplanedensity n0=1.3×10-8 cm-3. Thedensity decreases away from the plane of the Galaxy in a way that isconsistent with an exponential scale height of 3.2 kpc at negativelatitudes or 4.6 kpc at positive latitudes. Average volume densities ofO VI along different sight lines exhibit a dispersion of about 0.26 dex,irrespective of the distances to the target stars. This indicates that OVI does not arise in randomly situated clouds of a fixed size anddensity, but instead is distributed in regions that have a very broadrange of column densities, with the more strongly absorbing cloudshaving a lower space density. Line widths and centroid velocities aremuch larger than those expected from differential Galactic rotation, butthey are nevertheless correlated with distance and N(O VI), whichreinforces our picture of a diverse population of hot plasma regionsthat are ubiquitous over the entire Galactic disk. The velocity extremesof the O VI profiles show a loose correlation with those of very stronglines of less ionized species, supporting a picture of a turbulent,multiphase medium churned by shock-heated gas from multiple supernovaexplosions.

The Variation of Magnesium Depletion with Line-of-Sight Conditions
In this paper we report on the gas-phase abundance of singly ionizedmagnesium (Mg II) in 44 lines of sight, using data from the Hubble SpaceTelescope (HST). We measure Mg II column densities by analyzing medium-and high-resolution archival Space Telescope Imaging Spectrograph (STIS)spectra of the 1240 Å doublet of Mg II. We find that Mg IIdepletion is correlated with many line-of-sight parameters [e.g.,f(H2), EB-V, EB-V/r, AV, andAV/r] in addition to the well-known correlation with. These parameters should be more directly relatedto dust content and thus have more physical significance with regard tothe depletion of elements such as magnesium. We examine the significanceof these additional correlations as compared to the known correlationbetween Mg II depletion and . While none of thecorrelations are better predictors of Mg II depletion than, some are statistically significant even assumingfixed . We discuss the ranges over which thesecorrelations are valid, their strength at fixed ,and physical interpretations.

New Insights on Interstellar Gas-Phase Iron
In this paper we report on the gas-phase abundance of singly ionizediron (Fe II) for 51 lines of sight, using data from FUSE. Fe II columndensities are derived by measuring the equivalent widths of several UVabsorption lines and subsequently fitting those to a curve of growth.Our derivation of Fe II column densities and abundances creates thelargest sample of iron abundances in moderately to highly reddened linesof sight explored with FUSE, lines of sight that are on average morereddened than lines of sight in previous Copernicus studies. We presentthree major results. First, we observe the well-established correlationbetween iron depletion and and also find trendsbetween iron depletion and other line-of-sight parameters [e.g.,f(H2), EB-V, and AV], and we examinethe significance of these trends. Of note, a few of our lines of sightprobe larger densities than previously explored and we do not seesignificantly enhanced depletion effects. Second, we present twodetections of an extremely weak Fe II line at 1901.773 Å in thearchival STIS spectra of two lines of sight (HD 24534 and HD 93222). Wecompare these detections to the column densities derived through FUSEspectra and comment on the line's f-value and utility for future studiesof Fe II. Finally, we present strong anecdotal evidence that the Fe IIf-values derived empirically through FUSE data are more accurate thanprevious values that have been theoretically calculated, with theprobable exception of f1112.

An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology
We study the IR-through-UV interstellar extinction curves towards 328Galactic B and late-O stars. We use a new technique which employsstellar atmosphere models in lieu of unreddened "standard" stars. Thistechnique is capable of virtually eliminating spectral mismatch errorsin the curves. It also allows a quantitative assessment of the errorsand enables a rigorous testing of the significance of relationshipsbetween various curve parameters, regardless of whether theiruncertainties are correlated. Analysis of the curves gives the followingresults: (1) In accord with our previous findings, the central positionof the 2175 A extinction bump is mildly variable, its width is highlyvariable, and the two variations are unrelated. (2) Strong correlationsare found among some extinction properties within the UV region, andwithin the IR region. (3) With the exception of a few curves withextreme (i.e., large) values of R(V), the UV and IR portions of Galacticextinction curves are not correlated with each other. (4) The largesightline-to-sightline variation seen in our sample implies that anyaverage Galactic extinction curve will always reflect the biases of itsparent sample. (5) The use of an average curve to deredden a spectralenergy distribution (SED) will result in significant errors, and arealistic error budget for the dereddened SED must include the observedvariance of Galactic curves. While the observed largesightline-to-sightline variations, and the lack of correlation among thevarious features of the curves, make it difficult to meaningfullycharacterize average extinction properties, they demonstrate thatextinction curves respond sensitively to local conditions. Thus, eachcurve contains potentially unique information about the grains along itssightline.

Direct Measurement of the Ratio of Carbon Monoxide to Molecular Hydrogen in the Diffuse Interstellar Medium
We have used archival far-ultraviolet spectra from observations made byHST STIS and FUSE to determine the column densities and rotationalexcitation temperatures for carbon monoxide and molecular hydrogen,respectively, along 23 sight lines to Galactic O and B stars. Thereddening values range from E(B-V)=0.07 to 0.62, sampling the diffuse totranslucent interstellar medium (ISM). We find that the H2column densities range from 5×1018 to8×1020 cm-2 and the CO from upper limitsaround 2×1012 cm-2 to detections as high as1.4×1016 cm-2. CO increases with increasingH2, roughly following a power law of factor ~2. TheCO/H2 column density ratio is thus not constant, ranging from10-7 to 10-5, with a mean value of3×10-6. The sample segregates into ``diffuse'' and``translucent'' regimes, the former with molecular fraction <~0.25and AV/d<1 mag kpc-1. The mean CO/H2for these two regimes are 3.6×10-7 and9.3×10-6, respectively, significantly lower than thecanonical dark cloud value of 10-4. Six sight lines show theisotopic variant 13CO, and the isotopic ratio we observe(~50-70) is consistent with, if perhaps a little below, the average12C/13C for the ISM at large. The averageH2 rotational excitation temperature is 74+/-24 K, agreeingwell with previous studies, and the average CO temperature is 4.1 K,with some sight lines showing temperatures as high as 6.4 K. The higherexcitation CO is observed with higher column densities, consistent withthe effects of photon trapping in clouds with densities in the 20-100cm-3 range. We discuss the implications for the structure ofthe diffuse/translucent regimes of the ISM and the estimation ofmolecular mass in galaxies.

Phosphorus in the diffuse interstellar medium
We present FUSE and HST/STIS measurements of the P ii column densitytoward Galactic stars. We analyzed P ii through the profile fitting ofthe unsaturated λ1125 and λ1533 lines and derived columndensities integrated along the sightlines as well as in individualresolved components. We find that phosphorus is not depleted along thosesightlines sampling the diffuse neutral gas. We also investigate thecorrelation existing between P ii and O i column densities and find thatthere is no differential depletion between these two specie.Furthermore, the ratio N(P ii)/N(O i) is consistent with the solar P/Ovalue, implying that P ii and O i coexist in the same gaseous phase andare likely to evolve in parallel. We argue that phosphorus, as traced byP ii, is an excellent neutral oxygen tracer in various physicalenvironments, except when ionization corrections are a significantissue. Thus, P ii lines (observable with FUSE, HST/STIS, or withVLT/UVES for the QSO sightlines) are particularly useful as a proxy forO i lines when these are saturated or blended.

New Estimates of the Solar-Neighborhood Massive Star Birthrate and the Galactic Supernova Rate
The birthrate of stars of masses >=10 Msolar is estimatedfrom a sample of just over 400 O3-B2 dwarfs within 1.5 kpc of the Sunand the result extrapolated to estimate the Galactic supernova ratecontributed by such stars. The solar-neighborhood Galactic-plane massivestar birthrate is estimated at ~176 stars kpc-3Myr-1. On the basis of a model in which the Galactic stellardensity distribution comprises a ``disk+central hole'' like that of thedust infrared emission (as proposed by Drimmel and Spergel), theGalactic supernova rate is estimated at probably not less than ~1 normore than ~2 per century and the number of O3-B2 dwarfs within the solarcircle at ~200,000.

Oxygen Gas-Phase Abundance Revisited
We present new measurements of the interstellar gas-phase oxygenabundance along the sight lines toward 19 early-type Galactic stars atan average distance of 2.6 kpc. We derive O I column densities fromHubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS)observations of the weak 1355 Å intersystem transition. We derivetotal hydrogen column densities [N(HI)+2N(H2)] using HST/STISobservations of Lyα and Far Ultraviolet Spectroscopic Explorer(FUSE) observations of molecular hydrogen. The molecular hydrogencontent of these sight lines ranges fromf(H2)=2N(H2)/[N(HI)+2N(H2)]=0.03 to0.47. The average of6.3×1021 cm-2 mag-1 with astandard deviation of 15% is consistent with previous surveys. The meanoxygen abundance along these sight lines, which probe a wide range ofGalactic environments in the distant interstellar medium, is106 (O/H)gas=408+/-13 (1 σ in the mean). Wesee no evidence for decreasing gas-phase oxygen abundance withincreasing molecular hydrogen fraction, and the relative constancy of(O/H)gas suggests that the component of dust containing theoxygen is not readily destroyed. We estimate that, if 60% of the dustgrains are resilient against destruction by shocks, the distantinterstellar total oxygen abundance can be reconciliated with the solarvalue derived from the most recent measurements of 106(O/H)gassolar=517+/-58 (1 σ). We note thatthe smaller oxygen abundances derived for the interstellar gas within500 pc or from nearby B star surveys are consistent with a localelemental deficit.

Catalog of Galactic OB Stars
An all-sky catalog of Galactic OB stars has been created by extendingthe Case-Hamburg Galactic plane luminous-stars surveys to include 5500additional objects drawn from the literature. This work brings the totalnumber of known or reasonably suspected OB stars to over 16,000.Companion databases of UBVβ photometry and MK classifications forthese objects include nearly 30,000 and 20,000 entries, respectively.

Synthetic High-Resolution Line Spectra of Star-forming Galaxies below 1200 Å
We have generated a set of far-ultraviolet stellar libraries usingspectra of OB and Wolf-Rayet stars in the Galaxy and the Large and SmallMagellanic Cloud. The spectra were collected with the Far UltravioletSpectroscopic Explorer and cover a wavelength range from 1003.1 to1182.7 Å at a resolution of 0.127 Å. The libraries extendfrom the earliest O to late-O and early-B stars for the Magellanic Cloudand Galactic libraries, respectively. Attention is paid to the complexblending of stellar and interstellar lines, which can be significant,especially in models using Galactic stars. The most severe contaminationis due to molecular hydrogen. Using a simple model for the H2line strength, we were able to remove the molecular hydrogen lines in asubset of Magellanic Cloud stars. Variations of the photospheric andwind features of C III λ1176, O VI λλ1032, 1038, PV λλ1118, 1128, and S IV λλ1063, 1073, 1074are discussed as a function of temperature and luminosity class. Thespectral libraries were implemented into the LavalSB and Starburst99packages and used to compute a standard set of synthetic spectra ofstar-forming galaxies. Representative spectra are presented for variousinitial mass functions and star formation histories. The valid parameterspace is confined to the youngest ages of less than ~=10 Myr for aninstantaneous burst, prior to the age when incompleteness of spectraltypes in the libraries sets in. For a continuous burst at solarmetallicity, the parameter space is not limited. The suite of models isuseful for interpreting the rest-frame far-ultraviolet in local andhigh-redshift galaxies. Based on observations made with theNASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operatedfor NASA by the Johns Hopkins University under NASA contract NAS5-32985.

Inferring Physical Conditions in Interstellar Clouds of H2
We have developed a code that models the formation, destruction,radiative transfer, and vibrational/rotational excitation ofH2 in a detailed fashion. We discuss generally how suchcodes, together with Far Ultraviolet Spectrographic Explorer (FUSE)observations of H2 in diffuse and translucent lines of sight,may be used to infer various physical parameters. We illustrate theeffects of changes in the major physical parameters (UV radiation field,gas density, metallicity), and we point out the extent to which changesin one parameter may be mirrored by changes in another. We provide ananalytic formula for the molecular fraction, fH2,as a function of cloud column density, radiation fields, and grainformation rate of H2. Some diffuse and translucent lines ofsight may be concatenations of multiple distinct clouds viewed together.Such situations can give rise to observables that agree with the data,complicating the problem of uniquely identifying one set of physicalparameters with a line of sight. Finally, we illustrate the applicationof our code to an ensemble of data, such as our FUSE survey ofH2 in the Large and Small Magellanic Clouds, in order toconstrain the elevated UV radiation field intensity and reduced grainformation rate of H2 in those low-metallicity environments.

A New Measurement of the Average Far-Ultraviolet Extinction Curve
We have measured the extinction curve in the far-ultraviolet wavelengthregion of (900-1200 Å) using spectra obtained with the BerkeleyEUV/FUV spectrometer during the ORFEUS I and the ORFEUS II (Orbiting andRetrievable Far and Extreme Ultraviolet Spectrometer) missions in 1993and 1996. From the complete sample of early-type stars observed duringthese missions, we have selected pairs of stars with the same spectraltype but different reddenings to measure the differential FUVextinction. We model the effects of molecular hydrogen absorption andexclude affected regions of the spectrum to determine the extinctionfrom dust alone. We minimize errors from inaccuracies in the catalogedspectral types of the stars by making our own determinations of spectraltypes based on their IUE spectra. We find substantial scatter in thecurves of individual star pairs and present a detailed examination ofthe uncertainties and their effects on each extinction curve. We findthat, given the potentially large uncertainties inherent in using thepair method at FUV wavelengths, a careful analysis of measurementuncertainties is critical to assessing the true dust extinction. Wepresent a new measurement of the average far-ultraviolet extinctioncurve to the Lyman limit; our new measurement is consistent with anextrapolation of the standard extinction curve of Savage & Mathis.

IUE Absorption-Line Observations of the Moderately and Highly Ionized Interstellar Medium toward 164 Early-Type Stars
We present measurements of Galactic interstellar Al III, Si IV, and C IVabsorption recorded in high-resolution archival ultraviolet spectra of164 hot early-type stars observed by the International UltravioletExplorer (IUE) satellite. The objects studied were drawn from the listof hot stars scheduled to be observed with the Far UltravioletSpectroscopic Explorer (FUSE) satellite as part of observing programsdesigned to investigate absorption by O VI in the Galactic disk andhalo. Multiple IUE echelle-mode integrations have been combined toproduce a single ultraviolet (1150-1900 Å) spectrum of each starwith a spectral resolution of ~25 km s-1 (FWHM). Selectedabsorption-line profiles are presented for each star along with plots ofthe apparent column density per unit velocity for each line of the AlIII, Si IV, and C IV doublets. We report absorption-line equivalentwidths, absorption velocities, and integrated column densities based onthe apparent optical depth method of examining interstellar absorptionlines. We also determine column densities and Doppler parameters fromsingle-component curve-of-growth analyses. The scientific analysis ofthese observations will be undertaken after the FUSE satellite producessimilar measurements for absorption by interstellar O IV, Fe III, S III,and other ions. Based on archival data from observations obtained withthe International Ultraviolet Explorer (IUE) satellite sponsored byNASA, SERC, and ESA.

The Abundance of Interstellar Boron
We use new Space Telescope Imaging Spectrograph (STIS) and archivalGoddard High Resolution Spectrograph (GHRS) observations to studyinterstellar B II λ1362 and O I λ1355 absorption alongseven sight lines. Our new column density measurements, combined withmeasurements of four sight lines from the literature, allow us to studythe relative B/O abundances over a wide range of interstellarenvironments. We measure sight-line-integrated relative gas-phaseabundances in the range [B/O]=-1.00 to -0.17, and our data show that theB/O abundances are anticorrelated with average sight line densities overthe range log~-1.3 to +0.7. Detailed comparisons ofthe B II and O I line shapes show that the B/O ratio is significantlyhigher in warm interstellar clouds than in cool clouds. These resultsare consistent with the incorporation of boron into dust grains in thediffuse ISM. Since boron is likely incorporated into grains, we derive alower limit to the present-day total (gas+dust) interstellar boronabundance of B/H>~(2.5+/-0.9)×10-10. The effects ofdust depletion and ionization differences from element to element willmake it very difficult to reliably determine11B/10B along most interstellar sight lines. Basedon observations made with the NASA/ESA Hubble Space Telescope, obtainedfrom the data archive at the Space Telescope Science Institute. STScI isoperated by the Association of Universities for Research in Astronomy,Inc. under NASA contract NAS 5-26555.

Magellanic Cloud-Type Interstellar Dust along Low-Density Sight Lines in the Galaxy
We have studied the UV extinction properties along 30 Galactic sightlines using data from the International Ultraviolet Explorer archivethat have never been previously examined. These distant (d>1 kpc)sight lines were selected to investigate the distribution and physicalconditions of gas located in low-density regions of the Galactic diskand halo. The average densities along these sight lines are extremelylow. It is likely that they are dominated by the warm intercloud mediumand have little contribution from the cold cloud medium. We find that asubsample of these sight lines has extinction curves with weak bumps andvery steep far-UV extinction reminiscent of the Magellanic Clouds. Thesesight lines all lie in the region bounded by325deg<=l<=0deg and-5deg>=b>=-11deg. The gas along these sightlines shows forbidden velocities, which may indicate that the dust hasbeen subject to shocks. This type of low-density sight line may mimicthe environments found in the Magellanic Clouds. Large values of N(CaII)/N(Na I) indicating low depletion are associated with steep far-UVextinction. A possible correlation exists between decreasing bumpstrength and increasing far-UV steepness for extinction curves in theGalaxy and the Magellanic Clouds.

Five-colour photometry of OB-stars in the Southern Hemisphere
Observations of OB-stars, made in 1959 and 1960 at the Leiden SouthernStation near Hartebeespoortdam, South Africa, with the VBLUW photometerattached to the 90 cm light-collector, are given in this paper. They arecompared with photometry obtained by \cite[Graham (1968),]{gra68}\cite[Walraven & Walraven (1977),]{wal77} \cite[Lub & Pel(1977)]{lub77} and \cite[Van Genderen et al. (1984).]{gen84} Formulaefor the transformation of the present observations to those of\cite[Walraven & Walraven (1977)]{wal77} and \cite[Lub & Pel(1977)]{lub77} are given. Table 4 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/Abstract.html

The 74th Special Name-list of Variable Stars
We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.

UBV beta Database for Case-Hamburg Northern and Southern Luminous Stars
A database of photoelectric UBV beta photometry for stars listed in theCase-Hamburg northern and southern Milky Way luminous stars surveys hasbeen compiled from the original research literature. Consisting of over16,000 observations of some 7300 stars from over 500 sources, thisdatabase constitutes the most complete compilation of such photometryavailable for intrinsically luminous stars around the Galactic plane.Over 5000 stars listed in the Case-Hamburg surveys still lackfundamental photometric data.

ORFEUS-I Observations of Molecular Hydrogen in the Galactic Disk
Not Available

Absorption by Highly Ionized Interstellar Gas Along Extragalactic and Galactic Sight Lines
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....113.2158S&db_key=AST

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Южный Крест
Прямое восхождение:12h03m23.91s
Склонение:-62°41'45.8"
Видимая звёздная величина:7.823
Расстояние:1562.5 парсек
Собственное движение RA:-5.1
Собственное движение Dec:-0.5
B-T magnitude:7.77
V-T magnitude:7.819

Каталоги и обозначения:
Собственные имена   (Edit)
HD 1989HD 104705
TYCHO-2 2000TYC 8978-2711-1
USNO-A2.0USNO-A2 0225-13089444
HIPHIP 58783

→ Запросить дополнительные каталоги и обозначения от VizieR