Главная     Введение     Выжить во Вселенной    
Inhabited Sky
    News@Sky     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Пресса     Войти  

HD 13658


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

On the Formation of Perseus OB1 at High Galactic Latitudes
The Per OB1 association, which contains the remarkable double cluster hand χ Per, is unusual in not having a giant molecular cloud in itsvicinity. We show from Hipparcos data that the luminous members of thisassociation exhibit a bulk motion away from the Galactic plane, suchthat their average velocity increases with height above the Galacticplane. We find HAeBe and T Tauri stars toward probable remnant molecularclouds associated with Per OB1. These star-forming regions lie wellbeyond the location of the luminous member stars at heights of 280-400pc above the Galactic plane, far higher than that previously found forembedded clusters. We argue that the observed motion of the luminousmember stars is most naturally explained if many formed from moleculargas pushed and accelerated outward by an expanding superbubble, drivenpresumably by stellar winds and perhaps also by supernova explosions. Alarge shell of atomic hydrogen gas and dust that lies just beyond theremnant molecular clouds, believed to be driven by just such asuperbubble, may comprise the swept-up remains of the parental giantmolecular cloud from which this association formed. In support of thispicture, we find a weak trend for the younger O star members to lie athigher Galactic latitudes than the older supergiant members. Thestar-forming regions located at even larger heights above the Galacticplane presumably correspond to more recent episodes of star formation ator near the periphery of this superbubble.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

The association of IRAS sources and 12CO emission in the outer Galaxy
We have revisited the question of the association of CO emission withIRAS sources in the outer Galaxy using data from the FCRAO Outer GalaxySurvey (OGS). The availability of a large-scale high-resolution COsurvey allows us to approach the question of IRAS-CO associations from anew direction - namely we examined all of the IRAS sources within theOGS region for associated molecular material. By investigating theassociation of molecular material with random lines of sight in the OGSregion we were able to construct a quantitative means to judge thelikelihood that any given IRAS-CO association is valid and todisentangle multiple emission components along the line of sight. Thepaper presents a list of all of the IRAS-CO associations in the OGSregion. We show that, within the OGS region, there is a significantincrease ( ~ 22%) in the number of probable star forming regions overprevious targeted CO surveys towards IRAS sources. As a demonstration ofthe utility of the IRAS-CO association table we present the results ofthree brief studies on candidate zone-of-avoidance galaxies with IRAScounterparts, far outer Galaxy CO clouds, and very bright CO clouds withno associated IRAS sources. We find that ~ 25% of such candidate ZOAGsare Galactic objects. We have discovered two new far outer Galaxystar-forming regions, and have discovered six bright molecular cloudsthat we believe are ideal targets for the investigation of the earlieststages of sequential star formation around HII regions. Finally, thispaper provides readers with the necessary data to compare othercatalogued data sets with the OGS data.Tables 1, 2 and A1 are only available in electronic form at the CDS viaanonymous ftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/1083

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

New periodic variables from the Hipparcos epoch photometry
Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.

Dust features in the 10-mu m infrared spectra of oxygen-rich evolved stars
We have analyzed the 8-13.5 mu m UKIRT CGS3 spectra of 142 M-type starsincluding 80 oxygen-rich AGB stars and 62 red supergiants, with a viewto understanding the differences and similarities between the dustfeatures of these stars. We have classified the spectra into groupsaccording to the observed appearance of the infrared features. In eachcase the normalized continuum-subtracted spectrum has been compared tothose of the other stars to find similarities and form groups. The dustfeatures of the AGB stars are classified into six groups: broad AGB,where the feature extends from 8 mu m to about 12.5 mu m with littlestructure; broad+sil AGB, which consists of a broad feature with anemerging 9.7 mu m silicate bump; and four silicate AGB groups in which a``classic'' 9.7 mu m silicate feature gets progressively narrower.Likewise, the supergiant spectra have also been classified into groups,however these do not all coincide with the AGB star groups. In thesupergiant case we again have six groups: featureless, where there islittle or no emission above the continuum; broad Super, where thefeature extends from about 9 mu m to about 13 mu m; and four silicateSuper groups, which again show a progression towards the narrowest``classic'' 9.7 mu m silicate feature. We compare the mean spectrum foreach group, which yields two main results. Firstly, while the``classic'' silicate feature is essentially identical for both AGB starsand red supergiants, the broad features observed for these two stellartypes are quite different. We suggest that the dust in these twoenvironments follows different evolutionary paths, with the dust aroundMira stars, whose broad feature spectra can be fit by a combination ofalumina (Al2O3) and magnesium silicate,progressing from this composition to dust dominated by magnesiumsilicate only, while the dust around supergiants, whose broad featurecan be fit by a combination of Ca-Al-rich silicate andAl2O3, progresses from this initial composition toone eventually also dominated by magnesium silicate. The reason for thedifference in the respective broad features is not clear as yet, butcould be influenced by lower C/O ratios and chromospheric UV radiationfields in supergiant outflow environments. The second result concernsthe 12.5 - 13.0 mu m feature discovered in IRAS LRS spectra and widelyattributed to Al2O3. This feature is seenpredominantly in the spectra of semiregular variables, sometime in Mirasand only once (so far) in supergiant spectra. We argue that it isunlikely that this feature is due to Al2O3 or, ashas more recently been suggested, spinel(MgAl2O4), but could be associated with silicondioxide or highly polymerized silicates (not pyroxenes or olivines).

Observational investigation of mass loss of M supergiants
We present the analysis of infrared photometry and millimeterspectroscopy of a sample of 74 late-type supergiants. These observationsare particularly suitable to study the mass loss and the circumstellarenvelopes of evolved massive stars. In particular, we quantify thecircumstellar infrared excess, the relation of mass loss with stellarproperties, using the K-[12] colour index as mass-loss indicator. We donot find any clear correlation between mass loss rate and luminosity. Wealso show that the K-band magnitude is a simple luminosity indicator,because of the relative constancy of the K-band bolometric correction.Based on observations collected at the European Southern Observatory, LaSilla, Chile within program ESO 54.E-0914, and on observations collectedwith the IRAM 30m telescope. Tables A1 to A3 are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

The 74th Special Name-list of Variable Stars
We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.

Red supergiants, neutrinos and the Double Cluster
The Perseus Double Cluster is surrounded by one of the largestconcentrations of red supergiant stars in the sky. As a consequence, thedevelopment of our understanding of the structure and evolution of thesestars has been intimately connected with studies of this cluster. Thispaper traces the history of this connection from the end of the 19thcentury through to the early 1970s.

An Infrared Color-Magnitude Relationship
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110.2910H&db_key=AST

Uir-Band Emission from M Supergiants
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994MNRAS.266..640S&db_key=AST

Galactic OB associations in the northern Milky Way Galaxy. I - Longitudes 55 deg to 150 deg
The literature on all OB associations was reviewed, and their IRAS pointsource content was studied, between galactic longitude 55 and 150 deg.Only one third of the 24 associations listed by Ruprecht et al. (1981)have been the subject of individual studies designed to identify thebrightest stars. Distances to all of these were recomputed using themethod of cluster fitting of the B main sequence stars, which makes itpoossible to reexamine the absolute magnitude calibration of the Ostars, as well as for the red supergiant candidate stars. Also examinedwas the composite HR diagram for these associations. Associations withthe best defined main sequences, which also tend to contain very youngclusters, referred to here as OB clusters, have extremely few evolved Band A or red supergiants. Associations with poorly defined mainsequences and few OB clusters have many more evolved stars. They alsoshow an effect in the upper HR diagram referred to as a ledge byFitzpatrick and Garmany (1990) in similar data for the Large MagellanicCloud. It is suggested that the differences in the associations are notjust observational selection effects but represent real differences inage and formation history.

Infrared circumstellar shells - Origins, and clues to the evolution of massive stars
The infrared fluxes, spatial and spectral characteristics for a sampleof 111 supergiant stars of spectral types F0 through M5 are tabulated,and correlations examined with respect to the nature of theircircumstellar envelopes. One-fourth of these objects were spatialyresolved by IRAS at 60 microns and possess extended circumstellar shellmaterial, with implied expansion ages of about 10 to the 5th yr.Inferences about the production of dust, mass loss, and the relation ofthese characteristics of the evolution of massive stars, are discussed.

M supergiants in the Milky Way and the Magellanic Clouds Colors, spectral types, and luminosities
The differences in metal abundances between the Milky Way, LargeMagellanic Cloud (LMC), and Small Magellanic Cloud (SMC) affect most ofthe observable properties of the M supergiants in these galaxies; thosein the SMC (which has the lowest metal abundance) have the earliest meanspectral type, while those of the Milky Way exhibit the latest meanspectral type. This is presently interpreted as a combination of twoeffects of differing metal abundance on the supergiant atmospheres:first, lower abundance stars of a given effective temperature haveearlier MK spectral types due to reduced TiO abundance; second, theHayashi track is shifted to hotter effective temperature at reducedmetal abundance, thereby shifting the mean spectral type still earlier.The fact that the 10-micron excess decreases linearly with metalabundance suggests that mass loss rates are roughly the same for starsin all three galaxies, with the dust-to-gas ratio proportional to metalabundance.

Nineteen new spectroscopic binaries and the rate of binary stars among F-M supergiants
Nineteen spectroscopic binaries (SBs) have been discovered in radialvelocity measurements made with the CORAVEL spectrophotometer on 181northern F-M supergiants. The rate of detected SBs among northern F-Msupergiants is 21 percent, without any dependence on spectral orluminosity class. The study of the binary F-M supergiants with knownorbital elements indicates that all the systems with a period smallerthan the critical value P(circ) have a nearly circular orbit. The valueof P(circ) depends on the luminosity class, being 400-600 d for class Iband 2000-7000 d for class Ia. This circularization of the orbits may bedue to the transfer of angular momentum during the phase of binary massexchange.

Studies of luminous stars in nearby galaxies. I. Supergiants and O stars in the Milky Way.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1978ApJS...38..309H&db_key=AST

Photoelectric two-dimensional spectral classification of M supergiants
A photoelectric system defined by eight narrow bands between 0.7 and 1.1microns has been used to measure nearly all M supergiants that have beenclassified on the MK system. The photometric TiO and CN indicesreproduce the two-dimensional MK classifications to the accuracy of theMK types themselves. Mean fluxes and spectral classifications arepresented for 128 stars.

Infrared Excesses in the M Supergiants of H and χ Persei
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1973ApJ...186L.131C&db_key=AST

Error analysis of the photoelectric catalogue
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1973A&AS....9..297F&db_key=AST

A Recalibration of the Absolute Magnitudes of Supergiants
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972PASP...84..373S&db_key=AST

Spectral properties of luminous late-type stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972A&A....16..329G&db_key=AST

The dynamical structure of the h+chi Per association.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971A&A....10..414G&db_key=AST

M Supergiants in the Perseus Arm
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJ...160.1149H&db_key=AST

The space distribution and kinematics of supergiants
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970AJ.....75..602H&db_key=AST

Red Supergiants and Neutrino Emission
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969ApJ...155..935S&db_key=AST

The law of interstellar extinction in Perseus
Not Available

The Stellar Content of H and Chi Persei-Cluster and Association.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1964ApJS....8..439W&db_key=AST

The M-Type Supergiants in H and χ Persei.
Abstract image available at:http://adsabs.harvard.edu/abs/1955ApJ...122..434B

Photoelectric colors of early M-type stars.
Abstract image available at:http://adsabs.harvard.edu/abs/1954AJ.....59..396B

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Персей
Прямое восхождение:02h15m13.30s
Склонение:+58°08'32.3"
Видимая звёздная величина:8.819
Расстояние:1298.701 парсек
Собственное движение RA:-0.6
Собственное движение Dec:-0.4
B-T magnitude:11.794
V-T magnitude:9.065

Каталоги и обозначения:
Собственные имена   (Edit)
HD 1989HD 13658
TYCHO-2 2000TYC 3698-2826-1
USNO-A2.0USNO-A2 1425-03150655
HIPHIP 10489

→ Запросить дополнительные каталоги и обозначения от VizieR